HyperGAN:

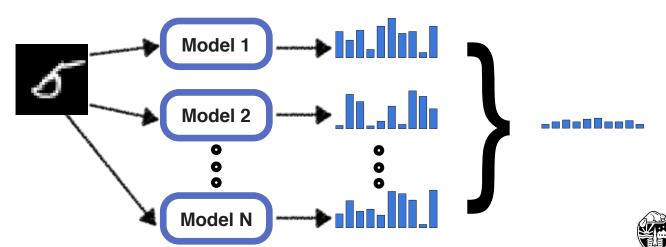
Generating Diverse, Performant Neural Networks

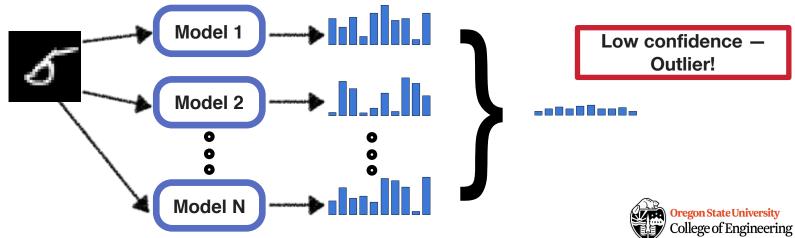
Neale Ratzlaff, Fuxin Li

Oregon State University

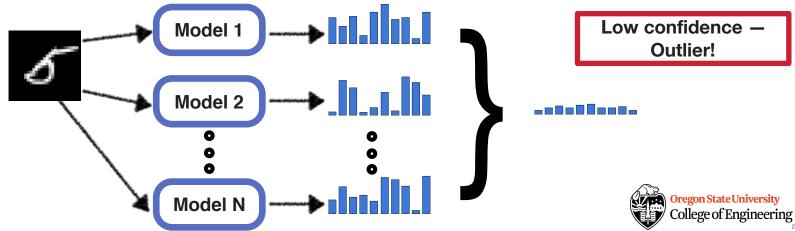
36th ICML 2019

Uncertainty

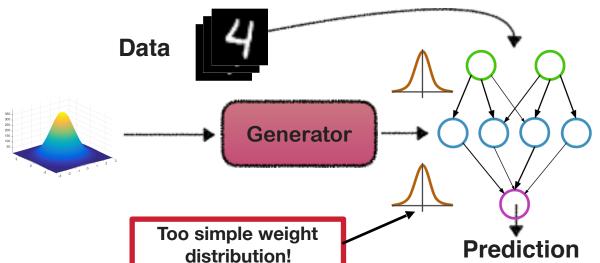

- ◆ High predictive accuracy is not sufficient for many tasks
- We want to know when our models are uncertain about the data


Fixing Overconfidence

- Given many models, each model behaves differently on outlier data
- By averaging their predictions, we can detect anomalies

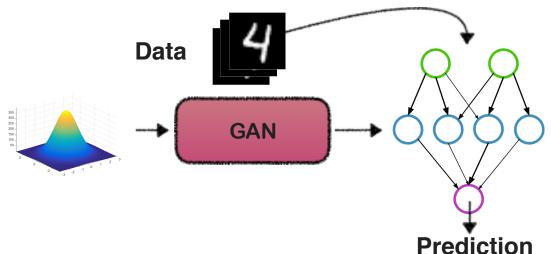

Fixing Overconfidence

- Given many models, each model behaves differently on outlier data
- By averaging their predictions, we can detect anomalies

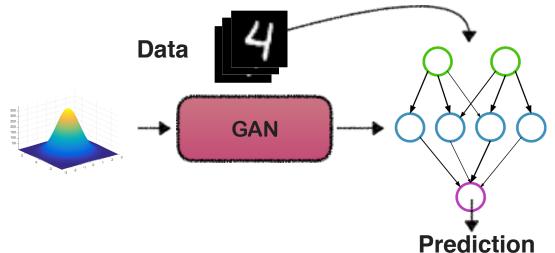

Fixing Overconfidence

- Variational inference gives a model posterior where we can sample many models
- Ensembles of models from random starts may also detect outliers

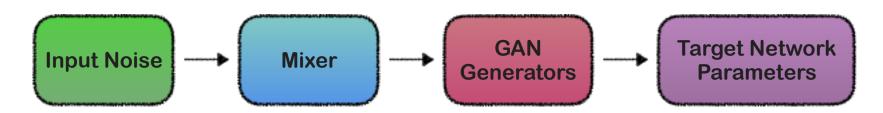
Regularization is too Restrictive


- ◆ Learning with VI is restrictive, it cannot model the complex model posterior
- Without regularization, our outputs mode collapse, losing diversity

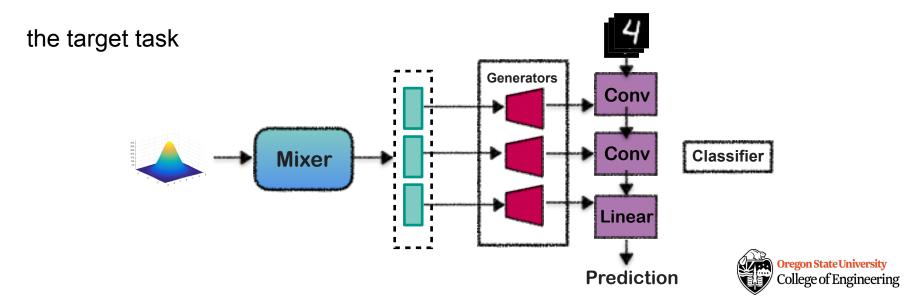
Implicit Model Distribution

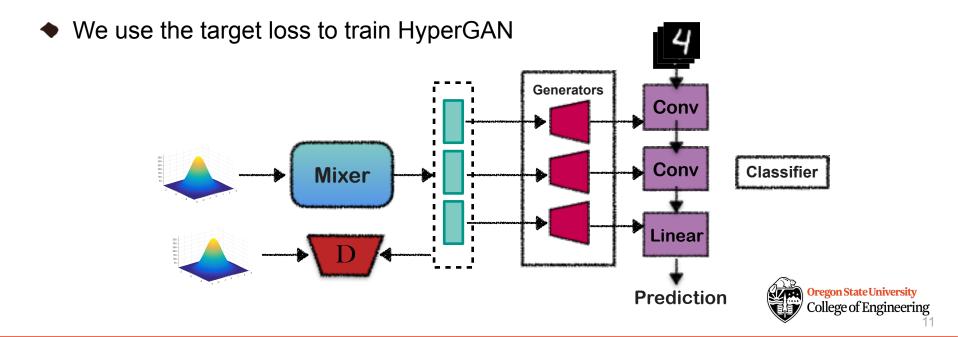

- We learn an implicit distribution over network parameters with a GAN
- ◆ We can instantly generate any number of diverse, fully trained networks

Implicit Model Distribution

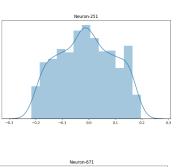

- ◆ With a GAN, we can sample many networks instantly
- ◆ However, with just a Gaussian input, the generated networks tend to be similar

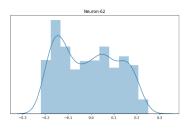
Mixer Network for Diverse Ensembles

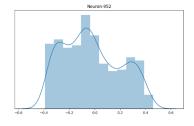

- Want to generate *diverse* ensembles, without repeatedly training models
- Our novel Mixer, transforms the input noise to learn complex structure.
- Mixer outputs are used to generate diverse layer parameters

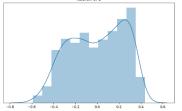

Generating Diverse Neural Networks

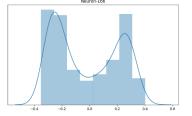
- Every training step we sample a new batch of networks
- ◆ The diversity given by the mixer lets us find many different models which solve

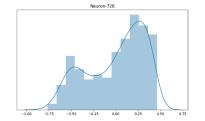

HyperGAN Training: Full Architecture


Prevent mode collapse by regularizing the Mixer with a Discriminator




Weight Diversity


 HyperGAN learns diverse weight posteriors beyond simple Gaussians imposed by variational inference



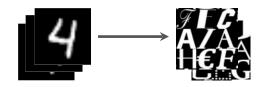
12

Results - Classification

◆ MNIST 5000: train on 5k example subset.

◆ CIFAR-5: Restricted subset of CIFAR-10

Method	MNIST	MNIST 5000	CIFAR-5	CIFAR-10
1 network	98.64 ±.3	$96.69 \pm .3$	84.50 ±.6	$76.32 \pm .3$
5 networks	$98.75 \pm .3$	$97.24 \pm .14$	$85.51 \pm .2$	$76.84 \pm .1$
10 networks	$99.22 \pm .09$	$97.33 \pm .1$	$85.54 \pm .2$	$77.52 \pm .09$
100 networks	$\textbf{99.31} \pm \textbf{.02}$	$\textbf{97.71} \pm \textbf{.05}$	$\textbf{85.81} \pm \textbf{.02}$	$\textbf{77.71} \pm \textbf{.03}$
APD	98.61	96.35	83.21	75.62
MNF	99.30	97.52	84.00	76.71
MC Dropout	98.73	95.58	84.00	72.75
Random Start	99.14	97.09	83.84	74.79



13

Out of Distribution Experiments

Outlier detection on CIFAR-10 and MNIST datasets

◆ MNIST → notMNIST

◆ CIFAR (0-4) → CIFAR (5-9)

Adversarial Examples: FGSM and PGD

Our increased diversity allows us to outperform other methods

Conclusion

- HyperGAN generates diverse models
- Makes few assumptions about output weight distribution
- Method is straightforward and extensible

Come to our poster for more details!