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Graph as a Data Representation
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Information-Theoretic Measures between Graphs

Structural reducibility of multilayer networks (unsupervised learning)
De Domenico et al., ”Structural reducibility of multilayer networks.” Nature Communications 6 (2015).
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Von Neumann Graph Entropy (VNGE): Introduction

Quantum information theory: Φ is a n× n density matrix that is
symmetric, positive semidefinite, and trace(Φ) = 1
{λi}ni=1 : eigenvalues of Φ

Von Neumann entropy H = −trace(Φ ln Φ) =−
∑

i:λi>0 λi lnλi
→ Shannon entropy over eigenspectrum {λi}ni=1, since

∑
i λi = 1

⇒ Generally requires O(n3) computation complexity for H

Graph G = (V, E ,W) ∈ G: undirected weighted graphs with
nonnegative edge weights. G has |V| = n nodes and |E| = m edges.

L = D−W: combinatorial graph Laplacian matrix of G.
D = diag({λi}): diagonal degree matrix. [W]ij = wij : edge weight.

Von Neumann graph entropy (VNGE): Φ = LN = c · L, where
c = 1

trace(L) = 1∑
i∈V di

= 1
2
∑

(i,j)∈E wij

H ≤ ln(n− 1), “=” when G is a complete graph with identical edge
weight

Braunstein, Samuel L., Sibasish Ghosh, and Simone Severini. ”The Laplacian of a graph as a density matrix: a basic
combinatorial approach to separability of mixed states.” Annals of Combinatorics 10.3 (2006): 291-317.
Passerini, Filippo, and Simone Severini. ”The von Neumann entropy of networks.” (2008).
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Von Neumann Graph Entropy (VNGE): Introduction

VNGE characterizes structural complexity of a graph and enables
computation of Jensen-Shannon distance (JSdist) between graphs.
Applications in network learning, computer vision and data science:

1 Structural reducibility of multilayer networks (hierarchical clustering)
De Domenico et al., ”Structural reducibility of multilayer networks.” Nature Communications 6 (2015).

2 Depth-analysis for image processing
Han, Lin, et al. ”Graph characterizations from von Neumann entropy.” Pattern Recognition Letters 33.15
(2012): 1958-1967.
Bai, Lu, and Edwin R. Hancock. ”Depth-based complexity traces of graphs.” Pattern Recognition 47.3 (2014):
1172-1186.

3 Network-ensemble comparison via edge rewiring
Li, Zichao, Peter J. Mucha, and Dane Taylor. ”Network-ensemble comparisons with stochastic rewiring and von
Neumann entropy.” SIAM Journal on Applied Mathematics, 78(2): 897920 (2018).

4 Structure-function analysis in genetic networks
Liu et al., ”Dynamic network analysis of the 4D nucleome.” bioRxiv, pp. 268318 (2018).

High consistency with classical Shannon graph entropy that is defined
as a probability distribution of a function on subgraphs of G.

Anand, Kartik, Ginestra Bianconi, and Simone Severini. ”Shannon and von Neumann entropy of random networks with
heterogeneous expected degree.” Physical Review E 83.3 (2011): 036109.
Anand, Kartik, and Ginestra Bianconi. ”Entropy measures for networks: Toward an information theory of complex
topologies.” Physical Review E 80.4 (2009): 045102.
Li, Angsheng, and Yicheng Pan. ”Structural Information and Dynamical Complexity of Networks.” IEEE Transactions
on Information Theory 62.6 (2016): 3290-3339.
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Outline

The main challenge of exact VNGE computation: it generally requires
cubic complexity O(n3) for obtaining the full eigenspectrum
→ NOT scalable to large graphs

Our solution: FINGER, a scalable and provably asymptotically correct
approximate computation framework of VNGE

FINGER supports two different data modes: batch and online

(a) Batch mode: O(n+m) (b) Online mode: O(∆n+ ∆m)

New applications:
1 Anomaly detection in evolving Wikipedia hyperlink networks
2 Bifurcation detection of cellular networks during cell reprogramming
3 Synthesized denial of service attack detection in router networks
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Efficient VNGE Computation via FINGER

Recall H = −
∑n

i=1 λi lnλi ⇒ O(n3) cubic complexity

FINGER enables fast and incremental computation of H with
asymptotic approximation guarantee

Lemma (Quadratic approximation of H)

The quadratic approximation of the von Neumann graph entropy H via
Taylor expansion is equivalent to Q = 1− c2(

∑
i∈V d

2
i + 2 ·

∑
(i,j)∈E w

2
ij)

di: degree (sum of edge weights) of node i

wij : edge weight of edge (i, j)

c = 1
2
∑

(i,j)∈E wij

O(n+m) linear complexity. |V| = n, |E| = m.

Q can be incremental updated given graph changes ∆G
⇒ O(∆n+ ∆m) complexity
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Approximate VNGE with Asymptotic Guarantees

Let λmax (λmin) be the largest (smallest) positive eigenvalue in {λi}
Approx. VNGE for batch graph sequence: Ĥ(G) = −Q lnλmax

Approx. VNGE for online graph sequence: H̃(G) = −Q ln(2c · dmax)

Relation: H̃ ≤ Ĥ ≤ H

Theorem (o(lnn) approximation error with balanced eigenspectrum)

If the number of positive eigenvalues n+ = Ω(n) and λmin = Ω(λmax), the

scaled approximation error (SAE) H−Ĥ
lnn → 0 and H−H̃

lnn → 0 as n→∞.

f(n) = o(h(n)) and f(n) = Ω(h(n)) mean limn→∞
f(n)
h(n)

= 0, and lim supn→∞ |
f(n)
h(n)

| > 0, respectively.

Computing λmax only requires O(n+m) operations via power
iteration ⇒ O(n+m) linear complexity for Ĥ.

Theorem (Incremental update of H̃ with O(∆n + ∆m) complexity)

The VNGE H̃(G⊕∆G) can be updated by H̃(G⊕∆G) = F (H̃(G),∆G)
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Numerical Validation on Synthetic Random Graphs
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Figure: Scaled approximation error (SAE) and computation time reduction ratio

scaled approximation error (SAE) =
H−Happrox

lnn

computation time reduction ratio =
T imeH−T imeHapprox

T imeH

almost 100% speed-up (O(n3) v.s. O(n+m))

approximation error decreases as average degree increases

regular (random) graphs have smaller (larger) approximation error
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Jensen-Shannon Distance between Graphs using FINGER

Two graphs G and G̃ of the same node set V.

KL divergence DKL(G|G̃) = trace(LN (G) · [ln LN (G)− ln LN (G̃)])
(not symmetric)

Let G = G⊕G̃
2 denote the averaged graph of G and G̃, where

LN (G) = LN (G)+LN (G̃)
2 .

The Jensen-Shannon divergence is defined as DIVJS(G, G̃) =
1
2DKL(G|G̃) + 1

2DKL(G̃|G) = H(G)− 1
2 [H(G) +H(G̃)] (symmetric)

The Jensen-Shannon distance is defined as JSdist(G, G̃) =
√

DIVJS ,
which is proved to be a valid distance metric.
Briet, Jop, and Peter Harremos. ”Properties of classical and quantum Jensen-Shannon divergence.” Physical review A
79.5 (2009): 052311.
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FINGER Algorithms for Jensen-Shannon Distance

Jensen-Shannon distance computation via FINGER-Ĥ (batch mode):

Input: Two graphs G and G̃
Output: JSdist(G, G̃)

1. Obtain G = G⊕G̃
2 and compute Ĥ(G), Ĥ(G̃), and Ĥ(G) via

FINGER (Fast)
2. JSdist(G, G̃)= Ĥ(G)− 1

2 [Ĥ(G) + Ĥ(G̃)]

⇒ O(n+m) complexity inherited from Ĥ

Jensen-Shannon distance computation via FINGER-H̃ (online mode):

Input: Graph G and its changes ∆G, Approx VNGE H̃(G) of G
Output: JSdist(G,G⊕∆G)
1. compute H̃(G⊕ ∆G

2 ) and H̃(G⊕∆G) via FINGER (Inc.)

2. JSdist(G,G⊕∆G)= H̃(G⊕ ∆G
2 )− 1

2 [H̃(G) + H̃(G⊕∆G)]

⇒ O(∆n+ ∆m) complexity inherited from H̃

o(
√

lnn) approximation guarantee of JSdist via FINGER (see paper)
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Application I: Anomaly Detection in Wikipedia Networks

Compare dissimilarity metrics of consecutive graphs via FINGER and
other baseline methods:

1 DeltaCon & RMD
2 λ distance (6 leading eigenvalues) & graph edit distance (GED)
3 VNGE-NL & VNGE-GL
4 divergence based on degree distribution

Table: Summary of four evolving Wikipedia hyperlink networks

Datasets (graph sequence) maximum # of nodes maximum # of edges # of graphs

Wikipedia - simple English (sEN) 100,312 (0.1 M) 746,086 (0.7 M) 122
Wikipedia - English (EN) 1,870,709 (1.8 M) 39,953,145 (39 M) 75
Wikipedia - French (FR) 2,212,682 (2.2 M) 24,440,537 (24 M) 121
Wikipedia - German (GE) 2,166,669 (2.1 M) 31,105,755 (31 M) 127

Node: article. Edge: existence of hyperlinks.
Graph: monthly hyperlink network.

Anomaly proxy : vextex/edge overlapping dissimilarity

VEO (G, G̃)= 1− 2(|V∩Ṽ|+|E∩Ẽ|)
|V|+|Ṽ|+|E|+|Ẽ|
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Application I: Anomaly Detection in Wikipedia Networks

Table: Computation time (sec.) and Pearson correlation coefficient (PCC) of
anomaly proxy and different methods. FINGER attains the best PCC and efficiency.

Datasets
FINGER
-JS (Fast)

FINGER
-JS (Inc.)

DeltaCon RMD
λ dist.
(Adj.)

λ dist.
(Lap.)

GED
VNGE
-NL

VNGE
-GL

Wiki
(sEN)

PCC 0.5593 0.3382 0.1596 0.1718 0.1871 -0.0095 -0.2036 0.2065 0.2462
time 26.065 0.7438 44.952 44.952 150.16 99.905 1.666 13.574 30.483

Wiki
(EN)

PCC 0.9029 0.5583 -0.2411 -0.1167 -0.0175 -0.1759 -0.3429 -0.0442 0.1519
time 603.98 13.975 1846.1 1846.1 4417.7 2898.3 47.299 335.66 858.22

Wiki
(FR)

PCC 0.8183 0.592 -0.1503 -0.1203 0.0133 -0.1877 -0.4915 0.0552 0.2349
time 1038.6 23.667 2804.5 2804.5 6664.5 4411.4 83.398 474.42 1129.1

Wiki
(GE)

PCC 0.6764 0.4619 -0.2035 -0.1542 0.0182 -0.3814 -0.4677 0.2194 0.2679
time 1457.3 32.647 4184.1 4184.1 9462.5 6013.7 115.923 716.31 1674.6
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Application II: Detection of Bifurcation Time Instance in
Dynamic Cellular Networks

Genome-wide chromosome conformation capture contact maps among
3K cells with 12 observations
Cellular reprogramming from human fibroblasts to skeletal muscle at
some critical time instance (index 6) - Liu et al., iScience (2018)

Temporal difference score TDS(Gt)=
dist(Gt,Gt−1)+dist(Gt,Gt+1)

2
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Application III: Synthesized Attacks in Router Networks

Connectivity pattern of 9 real-world autonomous system level router
communication graph

Synthesize the connectivity pattern of distributed denial of service
(DoS) attacks by randomly selecting one graph and then connecting
X% of nodes to a randomly chosen node in the selected graph

Table: Average detection rate on synthesized anomalous events

DoS attack (X%)
FINGER
-JS (Fast)

FINGER
-JS (Inc.)

DeltaCon RMD
λ dist.
(Adj.)

λ dist.
(Lap.)

GED
VNGE
-NL

VNGE
-GL

VEO
Cosine
distance

Bhattacharyya
distance

Hellinger
distance

1 % 24 % 10% 14% 14% 10% 24% 14% 22% 22% 14% 12% 10% 12%

3 % 75% 62% 58% 58% 12% 23% 36% 39% 39% 36% 35% 14% 16%

5 % 90% 77% 90% 90% 12% 28% 41% 67% 67% 41% 37% 37% 34%

10 % 91% 91% 91% 91% 91% 91% 81% 91% 91% 46% 46% 67% 71%

FINGER consistently outperforms other dissimilarity metrics for
different X

When X is small (difficult case for detection), JSdist via FINGER is
more sensible than other methods

When X is large (easy case), the performance becomes similar
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Conclusion and Future Work

An efficient framework (FINGER) for fast and incremental computation
of von Newman Graph Entropy and Jensen-Shannon graph distance

For batch graph mode, FINGER features linear complexity O(n+m).
For online graph mode, FINGER features incremental complexity
O(∆n+ ∆m). Both modes have asymptotic approximation guarantee.

New applications in anomaly detection and bifurcation detection

Code: https://github.com/pinyuchen/FINGER

Future work:
1 stochastic computation of Jensen-Shannon distance via sampling
2 extension to directed graphs, and graphs with negative weights
3 applications involving graph distance: e.g., brain networks, traffic

networks, unsupervised and active learning

Contact: pin-yu.chen at ibm.com; pinyuchenTW (Twitter)
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