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Information-Theoretic Measures between Graphs

@ Structural reducibility of multilayer networks (unsupervised learning)

@ De Domenico et al., "Structural reducibility of multilayer networks.” Nature Communications 6 (2015).
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Von Neumann Graph Entropy (VNGE): Introduction

@ Quantum information theory: ® is a n X n density matrix that is
symmetric, positive semidefinite, and trace(®) =1
{Ai}7, : eigenvalues of ®
@ Von Neumann entropy H = —trace(®In®) =—>_,, _Ailn)\;
— Shannon entropy over eigenspectrum {\;}7 ;, since > . \; =1
= Generally requires O(n?) computation complexity for H
e Graph G = (V,&E, W) € G: undirected weighted graphs with
nonnegative edge weights. G has |V| = n nodes and |£| = m edges.
o L =D — W: combinatorial graph Laplacian matrix of G.
D = diag({\:}): diagonal degree matrix. [W];; = w;;: edge weight.
@ Von Neumann graph entropy (VNGE): ® = Ly = ¢+ L, where
1 1

— 1 — _
€= tace@) ~ Tiepdi | 25 )ee Wis
e H <In(n—1), “=" when G is a complete graph with identical edge
weight

Braunstein, Samuel L., Sibasish Ghosh, and Simone Severini. " The Laplacian of a graph as a density matrix: a basic
combinatorial approach to separability of mixed states.” Annals of Combinatorics 10.3 (2006): 291-317.
Passerini, Filippo, and Simone Severini. " The von Neumann entropy of networks.” (2008).
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Von Neumann Graph Entropy (VNGE): Introduction

@ VNGE characterizes structural complexity of a graph and enables

computation of Jensen-Shannon distance (JSdist) between graphs.
@ Applications in network learning, computer vision and data science:
@ Structural reducibility of multilayer networks (hierarchical clustering)

De Domenico et al., "Structural reducibility of multilayer networks.” Nature Communications 6 (2015).

© Depth-analysis for image processing
Han, Lin, et al. " Graph characterizations from von Neumann entropy.” Pattern Recognition Letters 33.15
(2012): 1958-1967.
Bai, Lu, and Edwin R. Hancock. " Depth-based complexity traces of graphs.” Pattern Recognition 47.3 (2014):
1172-1186.

© Network-ensemble comparison via edge rewiring

Li, Zichao, Peter J. Mucha, and Dane Taylor. " Network-ensemble comparisons with stochastic rewiring and von
Neumann entropy.” SIAM Journal on Applied Mathematics, 78(2): 897920 (2018).

@ Structure-function analysis in genetic networks
Liu et al., "Dynamic network analysis of the 4D nucleome.” bioRxiv, pp. 268318 (2018).

@ High consistency with classical Shannon graph entropy that is defined
as a probability distribution of a function on subgraphs of G.

Anand, Kartik, Ginestra Bianconi, and Simone Severini. "Shannon and von Neumann entropy of random networks with
heterogeneous expected degree.” Physical Review E 83.3 (2011): 036109.

Anand, Kartik, and Ginestra Bianconi. "Entropy measures for networks: Toward an information theory of complex
topologies.” Physical Review E 80.4 (2009): 045102.

Li, Angsheng, and Yicheng Pan. "Structural Information and Dynamical Complexity of Networks.” |IEEE Transactions
on Information Theory 62.6 (2016): 3290-3339.
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@ The main challenge of exact VNGE computation: it generally requires
cubic complexity O(n?) for obtaining the full eigenspectrum
— NOT scalable to large graphs

@ Our solution: FINGER, a scalable and provably asymptotically correct
approximate computation framework of VNGE

@ FINGER supports two different data modes: batch and online

{ & I>-<°} 2 - -

(a) Batch mode: O(n + m) (b) Online mode: O(An + Am)
o New applications:

@ Anomaly detection in evolving Wikipedia hyperlink networks
@ Bifurcation detection of cellular networks during cell reprogramming
© Synthesized denial of service attack detection in router networks
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Efficient VNGE Computation via FINGER

@ Recall H=—3"", X\ In); = O(n3) cubic complexity

@ FINGER enables fast and incremental computation of H with
asymptotic approximation guarantee

Lemma (Quadratic approximation of H)

The quadratic approximation of the von Neumann graph entropy H via
Taylor expansion is equivalent to Q =1 — (3., d? + 2 - 2 (ij)ee wfj)

@ d;: degree (sum of edge weights) of node i
e wj; : edge weight of edge (i, j)
_ 1
°c= 23 i j)ee Wij
e O(n+ m) linear complexity. |V| =mn, || =m.

@ can be incremental updated given graph changes AG
= O(An + Am) complexity
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Approximate VNGE with Asymptotic Guarantees

o Let Apax (Amin) be the largest (smallest) positive eigenvalue in {\;}
@ Approx. VNGE for batch graph sequence: ﬁI(G) = —QIn Anax

e Approx. VNGE for online graph sequence: H(G) = —QIn(2¢ - dinayx)
o Relation: H < H < H

Theorem (o(Inn) approximation error with balanced eigenspectrum)

If the number of positive eigenvalues ny = Q(n) and )\mm = Q(Amax), the

HH H=H _, () asn — o0o.

scaled approximation error (SAE) 5

f(n) = o(h(n)) and f(n) = Q2(h(n)) mean limy, oo hE;L; =0, and lim sup,, _, oo ‘ﬁ:-)‘ > 0, respectively.
e Computing Apax only requires O(n + m) operations via power
iteration = O(n + m) linear complexity for H.

Theorem (Incremental update of H with O(An + Am) complexity)
The VNGE H(G & AG) can be updated by H(G & AG) = F(H(G), AG)
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Numerical Validation on Synthetic Random Graphs

- Erdos-Renyi graphs Erdos-Renyi graphs Watts-Strogatz graphs
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Figure: Scaled approximation error (SAE) and computation time reduction ratio

o H—H,
o scaled approximation error (SAE) = —— 22
. . . . Timepg—Timep, o0
@ computation time reduction ratio = Timen
e almost 100% speed-up (O(n?) v.s. O(n +m))
@ approximation error decreases as average degree increases
@ regular (random) graphs have smaller (larger) approximation error
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Jensen-Shannon Distance between Graphs using FINGER

@ Two graphs G and G of the same node set V.

e KL divergence Di,(G|G) = trace(Ly(G) - [In Ly (G) — In Ly (G)))
(not symmetric)

o Let G = G%ﬁ denote the averaged graph of G and G, where
Ly (G) = LN(G)+LN(6')

@ The Jensen- Shannon divergence is defined as DIV ;s (G, G)
fDKL(G|G) 1DKL(G|G) H(G) - 3[H(G) + H(G)] (symmetric)

@ The Jensen-Shannon distance is defined as JSdist(G, CNJ) = /DIVyg,
which is proved to be a valid distance metric.

Briet, Jop, and Peter Harremos. " Properties of classical and quantum Jensen-Shannon divergence.” Physical review A
79.5 (2009): 052311.
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FINGER Algorithms for Jensen-Shannon Distance

@ Jensen-Shannon distance computation via FINGER-H (batch mode):
Input: Two graphs G and G
Output: JSdist(G, G)
1. Obtain G = GEBG and compute H(G), H(G), and H(G) via
FINGER (Fast) R o
2. JSdist(G, G)= H(G) — 3[H(G) + H(G)]

= O(n + m) complexity inherited from H
o Jensen-Shannon distance computation via FINGER-H (online mode):

Input: Graph G and its changes AG, Approx VNGE fI(G) of G
Output: JSdist(G, G EB AG)
1. compute (GEB AG) and H(G & AG) via FINGER (Inc.)

2. JSdist(G, G @ AG) H(G o A% — LH(G) + H(G & AG))
= O(An + Am) complexity inherited from H
@ o(VInn) approximation guarantee of JSdist via FINGER (see paper)
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Application |: Anomaly Detection in Wikipedia Networks

@ Compare dissimilarity metrics of consecutive graphs via FINGER and
other baseline methods:
@ DeltaCon & RMD
@ ) distance (6 leading eigenvalues) & graph edit distance (GED)
© VNGE-NL & VNGE-GL
© divergence based on degree distribution

Table: Summary of four evolving Wikipedia hyperlink networks

Datasets (graph sequence) maximum # of nodes maximum # of edges # of graphs
Wikipedia - simple English (sEN) 100,312 (0.1 M) 746,086 (0.7 M) 122
Wikipedia - English (EN) 1,870,709 (1.8 M) 39,953,145 (39 M) 75
Wikipedia - French (FR) 2,212,682 (2.2 M) 24,440,537 (24 M) 121
Wikipedia - German (GE) 2,166,669 (2.1 M) 31,105,755 (31 M) 127

@ Node: article. Edge: existence of hyperlinks.
Graph: monthly hyperlink network.

@ Anomaly proxy : vextex/edge overlapping dissimilarity

Fy= 1 2VVIHEnd)
VEO (G, G)=1~ i iere

P.-Y. Chen ICML 2019 June 10, 2019 12 /16



Application |: Anomaly Detection in Wikipedia Networks

Table: Computation time (sec.) and Pearson correlation coefficient (PCC) of
anomaly proxy and different methods. FINGER attains the best PCC and efficiency.

FINGER  FINGER Nt A dst VNGE ~ VNGE
Datasels g (Fast) -JS (Inc) DeCon RMD gy ap) °FP 0 e
Wik PCC 05503 03382 01506 01718 01871 -0.0095 -0.0036 02065 (0.2462
(sEN) time 26065  0.7438 44952 44952 150.16 99.905 1666 13574 30483
Wiki PCC 00020 05583 02411 -0.1167 -00175 -0.1750 -0.3420 -00442 (0.1519
(EN) tme 60398  13.075 18461 18461 44177 28983 47299 33566  858.22
Wik PCC 08183 0592  -0.1503 -0.1203 00133 -0.1877 04915 00552 0.2349
(FR) time 10386  23.667 28045 28045 66645 44114 83398 47442 1120.1
Wik PCC 06764 04610 02035 -0.1542 00162 -03814 -0.4677 02194 0.26719
(GE) time 14573  32.647 41841 41841 04625 60137 115923 71631 16746

anomaly proxy FINGER-JS (Fast) FINGER-JS (Inc.)  ,.,s GED DeltaCon
1 15 1 2 1
1
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Application Il: Detection of Bifurcation Time Instance in

Dynamic Cellular Networks

@ Genome-wide chromosome conformation capture contact maps among
3K cells with 12 observations

@ Cellular reprogramming from human fibroblasts to skeletal muscle at
some critical time instance (index 6) - Liu et al., iScience (2018)

e Temporal difference score TDS(G,)= diSt(Gt’Gt‘l);diSt(Gt’G“’l)
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Application Ill: Synthesized Attacks in Router Networks

o Connectivity pattern of 9 real-world autonomous system level router
communication graph

@ Synthesize the connectivity pattern of distributed denial of service
(DoS) attacks by randomly selecting one graph and then connecting
X% of nodes to a randomly chosen node in the selected graph

Table: Average detection rate on synthesized anomalous events

N FINGER FINGER Adist. A dist. VNGE VNGE Cosine  Bhattacharyya Hellinger
DoS attack (X7) -JS (Fast) -JS (Inc.) DeltaCon  RMD (Adj.) (Lap.) GED -NL -GL VEO distance distance distance
1% 24 % 10% 14% 14%  10% 24% 14% 22% 22% 14% 12% 10% 12%
3% 75% 62% 58% 58% 12% 23% 36% 39% 39% 36% 35% 14% 16%
5% 90% 7% 90% 90% 12% 28% 41% 67% 67% 41% 37% 37% 34%
10 % 91% 91% 91% 91% 91% 91% 81% 91% 91% 46% 46% 67% 71%

@ FINGER consistently outperforms other dissimilarity metrics for
different X

e When X is small (difficult case for detection), JSdist via FINGER is
more sensible than other methods

@ When X is large (easy case), the performance becomes similar

P.-Y. Chen ICML 2019 June 10, 2019 15 / 16



Conclusion and Future Work

o An efficient framework (FINGER) for fast and incremental computation
of von Newman Graph Entropy and Jensen-Shannon graph distance

@ For batch graph mode, FINGER features linear complexity O(n + m).
For online graph mode, FINGER features incremental complexity
O(An + Am). Both modes have asymptotic approximation guarantee.

@ New applications in anomaly detection and bifurcation detection
e Code: https://github.com/pinyuchen/FINGER
o Future work:

@ stochastic computation of Jensen-Shannon distance via sampling

@ extension to directed graphs, and graphs with negative weights

© applications involving graph distance: e.g., brain networks, traffic
networks, unsupervised and active learning

e Contact: pin-yu.chen at ibm.com; pinyuchenTW (Twitter)
@ Poster: Tuesday 6:30-9:00 pm, Pacific Ballroom #265
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