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Problem

f:R" SR so f(x1,....,2,) €R
« Regression: Given {(x;, f(x;), Vf(x;))}; recover f
 Sensitivity Analysis: Which coordinate directions mattere
Can we reduce dimension of input space to make this easier?
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New Approach: Active Manifolds
Intuition: Standing at Xg in domain of f ,,

e There are n — 1 directions one can
step without changing f.

» There is one, special direction,V f(xo)
in which f changes maximally!
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Regression Algorithm Idea:
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» Use gradient ascent/descent fo

walk up/down hill and record values  f(z ) - y3 +0.2¢ + O.éy
of f—an active manifold. Level sets (orange) and

. To approximate f (Xo) walk along o gradient vector field (blue)

: : fangent fo an active
%OAL?{;:G? set fo the active manifold. manifold at every point.
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Examples & Regression Results
fl(ajay) — 6y—:1:2

fB(xay) — 373 + yS
+ 0.2z + 0.6y

P —— —

fa(z,y) = z? +y°

n/N

Result: AM exhibits ¢'mean | ('std | ¢“mean | (*std méan
order(s) of magnitude 4, | AM | 6.739E-3 | 6.826E-4 | 1.879E-4 | 1.847E-5 | 86.7%

: AM | 0.0158 | 9.697E-4 | 4.015E-4 | 2.562E-5 | 77%

error and error variance f2 mAS 0395 [ 5.484E3 | 0488 | 6.800E3 | 100%
fhan AS. AM | 00106 | 8.442E-4 | 3.154E-4 | 2.887E-5 | 92.9%
QK RIDGE I3 As 0.982 0.018 1.22 0.0224 | 100%




Mathematical Foundation & Pseudo-Algorithm Presented

%

1. Active Manifolds (AM)

Here we provide the mathematical foundation for AM and
describe a pseudo-algorithm for reducing analysis of the
m-dimensional function to its one-dimensional analogue.
Examples to illustrate the method are provided, including
illustrations of problems or obstructions identified.

1.1. Mathematical Justification:
Recall that the arc length of a C* curve 4(t) : [0,1] — &™

is given by S(y) = [ |¥'(t)| dt. Let U C R™ open and
assume f € C*(U).

We seek
1
— / (VI 7 (1)) dt
0

over all C* curves 4(t) : [0,1] — U, such that |5/ = 1
(constant speed), where {-,-) denotes the usual Euclidean
inner product. Note that the integrand satisfies

(V). ()) = [VF(v(0)] ¥ (t) | cos &

where # is the angle between V f{+(t)) and 4(¢). Clearly
this quantity is maximal when # = 0, indicating that
V f(+(t)) and +'(t) point in the same direction; hence, the
solution to this optimization problem is

Vi(x(t)

YO = G &
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For the following proposition, let f, [/ be as above and:

e M =Im~(t) an active manifold
of f U

e The relation ~ defined by [, i.e.,
Vr,y € U,
z~y = flz) = fly)

o [z] = {y e R™: f(z) = f(y)}
e X" [ ={[z] iz e R™}
o m:R™ —» R™[n

-
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Proposition 1.3. If+y(t) is a solution to Eqn. (1) on an open
set U away from points where ¥V f = 0, then the following
statements hold.

(i) M is an immersed C* submanifold of U C R™.

(ii) U/ ~ is a C* manifold.

(iii) o~ is a C* embedding of M in R™ [~

(iv) for:[0,1] — R is strictly increasing.
Proof. (i): Note that f| 4 provides a global C* chart for
M. Further, M is immersed since 4’| = 1, hence ' does
not vanish. (ji): Since fis C* and constant on the fibers of
, the map f : U/~ — R defined as f([z]) := f(z)is C".
So U/~ is a C* manifold with global chart f. (iii): 7| v is
a bijection onto 7 (M) since M fibers pointwise under 7.
Since  is linear, it follows that d|v¢ = | v is bijective;
hence, « is an embedding. (iv): Monotonicity of f o«

a constant-speed streamline of V f. Specifying a starting
point, 7, uniquely identifies the flow as furnished by the
following standard theorem of differential equations.

Lemma 1.1. Given f : U ¢ R™ £, R and an initial
value g € U, there exisis a unigue local solution ~(t)
to the system of first-order ordinary differential equations
described by (1).

Proof. Choose any compact and convex subset K € U
containing ~,. Since f is €', Vf satisfies the Lips-
chitz condition, |V f(z,) — V f(z2)| < Li|z, — 25|, for
zy,w2 € K and Ly < oo is some Lipschitz constant. By
Theorem 1 Ch. 6 from Birkhoff & Rota (1969), these con-
ditions are sufficient for the existence and uniqueness of a
local solution ~(t) to Egn. (1) about 7, in K, which can be
reparametrized to have domain [0, 1] as desired. Since K
was an arbitrary compact set we have the result. 3

Definition 1.2. Let f : U € B™ < R. We say that M ¢
[/ is an active manifold defined by f provided there exists
a constant-speed parametrization of M, 4(t) : [0,1] — U,
such that condition (1) is satisfied for all t € [0, 1].

follows directly from the definition: ¥t () | Vf(¢). O

Theorem 1.4. Suppose the level set { [ = a} is connected
and + is any active manifold such that o € Im(f ¢+). Then
3! by such tharyN{ f = a} = {y(ta)}, and v L {f = a}.

Proof. The Implicit Function Theorem guarantees that for
eacha € Im f, the level set {z : f(x) = a}isan (m—1)-
dimensional submanifold of ™ that is orthogonal to the
gradient vector field and therefore to any intersecting active
manifold. By hypothesis 3 £ such that «(to) € {f = a}.
Unigueness follows from monotonicity of f o « (Proposi-
tion 1.3.iv). (W

Implication: This theorem implies that if one can recover
fo#y(a1-D regression problem), then one can recover [ on
the connected component of any level set touching -y. Con-
cisely, if p is in the component of A := {f = f(p)} inter-
secting -y, one may move freely in the (m — 1)-dimensional
submanifold A transverse to 4 without changing f. This
motivates our AM pseudo-algorithm.

1.2. Active Manifolds Psendo-Algorithm:

The AM algorithm has three broad components: (1) Build
the active manifold M = Im(~(t)): (2) Approximate the
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Sensitivity Analysis for MHD Generator
(Following Glaws et al. 2017

Induced magnetic field model Result
B, — 0P o (1 VIR ( Byl )) AM dallows visualization fo see
" 0x 2By Byl 2\/np parameter influence throughout
the active manifold:
PO I’Ci me_l_ers & FO ngeS: Coordinate Derivatives of yp(t) —
0.0016 1 llog(p)'|
Index Name Notation  Interval 0.0014 - llog(G |
1 Fluid viscosity log(u) [log(0.05), log(0.2)] 0.0012 - ::SEEZZM
2 Fluid density log(p) [log(1), log(5)] 0.0010 4
3 Applied pressure gradient  log (%’ ) [log(0.5), log(3)] 00008 J
4 Resistivity logr)  [log(0.5), log(3)] o
5 Applied magnetic field log(By) [log(0.1), log(1)] 00004 .




Active Manifold Benefits

« Reduces n - dimensional analysis fo 1 dimension
(computationally more expensive)

« Order of magnitude greater accuracy in regression over AS

« Accessible visualizations of the function and parameters
gradients along the active manifold

« Permits sensitivity analysis locally along the active manifold
Questions?e

Robert A. Bridges
bridgesra@ornl.gov
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Previous Approaches & Related Work

« Sliced Inverse Regression': Given {(x:, f(x:))}: find lower rank matrix B
o f(z) = g(Bz) -
+ Active Subspaces (AS) 2. Given {(xs, f(x:), Vf(x:))}s

— Let 1 ZV viT — WAWY
C —_— — a; . — .
N — Ja, f"’"

- Do SVD on C to find directions f changes most.

» ResNet Isosurface Learning3: Given{(x;, f(x:), Vf(x;))}: find nonlinear,
lower rank B (using ResNet) so f(z) ~ g(Bx).

References:
1See Li 1991, Duan & Li 1991, Li & Naschtsheim 2006, Coudret et al. 2014

2See Russi 2010, Constantine et al. 2014, 2015, Lukaczyk et al. 2014, Constantine & Diaz 2017
3 See Zhang & Hinkle 2019 (arxiv preprint)
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