Lorentzian Distance Learning for Hyperbolic Representations

Marc Law, **Renjie Liao**, Jake Snell, Richard Zemel June 13, 2019

University of Toronto, Vector Institute

Introduction: Hyperbolic Representations

Manifolds with constant curvature:

- zero curvature: Euclidean space
- positive curvature $1/r^2$: Hypersphere of radius r
- negative curvature $-1/\beta$: Hyperboloid model $\mathcal{H}^{d,\beta}$

Introduction: Hyperbolic Representations

Manifolds with constant curvature:

- zero curvature: Euclidean space
- positive curvature $1/r^2$: Hypersphere of radius r
- negative curvature $-1/\beta$: Hyperboloid model $\mathcal{H}^{d,\beta}$

$$\mathcal{H}^{d,\beta} := \{\mathbf{a} = (a_0, \cdots, a_d) \in \mathbb{R}^{d+1} : \langle \mathbf{a}, \mathbf{a} \rangle_{\mathcal{L}} = -\beta, a_0 > 0\} \quad (1)$$

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathcal{L}} := -a_0 b_0 + \sum_{i=1}^d a_i b_i$$
 (2)

Introduction: Hyperbolic Representations

Manifolds with constant curvature:

- zero curvature: Euclidean space
- positive curvature $1/r^2$: Hypersphere of radius r
- ullet negative curvature -1/eta: Hyperboloid model $\mathcal{H}^{d,eta}$

$$\mathcal{H}^{d,\beta} := \{\mathbf{a} = (a_0, \cdots, a_d) \in \mathbb{R}^{d+1} : \langle \mathbf{a}, \mathbf{a} \rangle_{\mathcal{L}} = -\beta, a_0 > 0\} \quad (1)$$

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathcal{L}} := -a_0 b_0 + \sum_{i=1}^d a_i b_i$$
 (2)

• Any finite tree can be mapped into a finite hyperbolic space while approximately preserving distances between nodes (Gromov, 1987).

Introduction: Hyperbolic Distances

Poincaré distance: defined for $\beta = 1$

$$\forall \mathbf{a} \in \mathcal{H}^{d,1}, \mathbf{b} \in \mathcal{H}^{d,1} \quad d_{\mathcal{P}}(\mathbf{a}, \mathbf{b}) = \cosh^{-1}(-\langle \mathbf{a}, \mathbf{b} \rangle_{\mathcal{L}})$$
 (3)

Squared Lorentzian distance: defined and smooth for any $\beta > 0$

$$\forall \mathbf{a} \in \mathcal{H}^{d,\beta}, \mathbf{b} \in \mathcal{H}^{d,\beta} \quad d_{\mathcal{L}}^{2}(\mathbf{a}, \mathbf{b}) = -2\beta - 2\langle \mathbf{a}, \mathbf{b} \rangle_{\mathcal{L}}$$
(4)

Introduction: Hyperbolic Distances

Poincaré distance: defined for $\beta = 1$

$$\forall \mathbf{a} \in \mathcal{H}^{d,1}, \mathbf{b} \in \mathcal{H}^{d,1} \quad d_{\mathcal{P}}(\mathbf{a}, \mathbf{b}) = \cosh^{-1}(-\langle \mathbf{a}, \mathbf{b} \rangle_{\mathcal{L}})$$
 (3)

Squared Lorentzian distance: defined and smooth for any $\beta>0$

$$\forall \mathbf{a} \in \mathcal{H}^{d,\beta}, \mathbf{b} \in \mathcal{H}^{d,\beta} \quad d_{\mathcal{L}}^{2}(\mathbf{a}, \mathbf{b}) = -2\beta - 2\langle \mathbf{a}, \mathbf{b} \rangle_{\mathcal{L}}$$
 (4)

Advantages:

- Easy to optimize with standard gradient descent
- Closed-form expression for the center of mass
- Preserved order of Euclidean norms between Poincaré ball and hyperboloid
- The Euclidean norm of the centroid decreases as $\beta > 0$ decreases: ideal to represent hierarchies

Center of mass

Theorem (Centroid of the squared Lorentzian distance)

The point $\mu \in \mathcal{H}^{d,\beta}$ that minimizes the problem

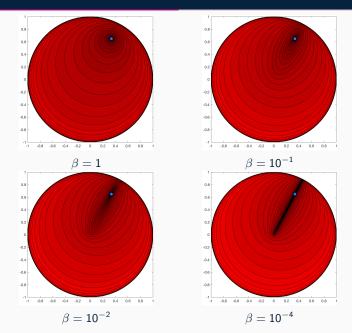
$$\min_{\boldsymbol{\mu} \in \mathcal{H}^{d,\beta}} \sum_{i=1}^{n} \nu_i \mathsf{d}_{\mathcal{L}}^2(\mathbf{x}_i, \boldsymbol{\mu}) \tag{5}$$

where $\forall i, \mathbf{x}_i \in \mathcal{H}^{d,\beta}$, $\nu_i \geq 0, \sum_i \nu_i > 0$ is formulated as:

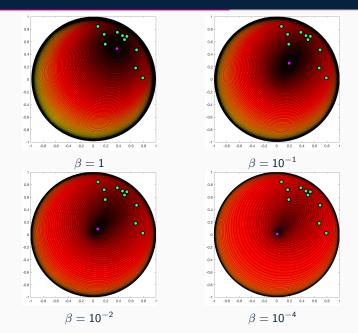
$$\mu = \sqrt{\beta} \frac{\sum_{i=1}^{n} \nu_i \mathbf{x}_i}{\left| \left\| \sum_{i=1}^{n} \nu_i \mathbf{x}_i \right\|_{\mathcal{L}} \right|}$$
 (6)

where $|\|\mathbf{a}\|_{\mathcal{L}}| = \sqrt{|\|\mathbf{a}\|_{\mathcal{L}}^2|}$ is the modulus of the imaginary Lorentzian norm of the positive time-like vector \mathbf{a} .

Distance as a function of the curvature $-1/\beta$



Centroid as a function of the curvature $-1/\beta$



Retrieval Evaluation performance

Method		$d_\mathcal{P}$ in \mathcal{P}^d	$d_\mathcal{P}$ in \mathcal{H}^d	Ours $\beta = 0.01$	Ours $eta=0.1$	Ours $\beta=1$
				$\beta = 0.01$	$\beta = 0.1$	$\beta = 1$
WordNet Nouns	MR	4.02	2.95	1.46	1.59	1.72
	MAP	86.5	92.8	94.0	93.5	91.5
WordNet Verbs	MR	1.35	1.23	1.11	1.14	1.23
	MAP	91.2	93.5	94.6	93.7	91.9
EuroVoc	MR	1.23	1.17	1.06	1.06	1.09
	MAP	94.4	96.5	96.5	96.0	95.0
ACM	MR	1.71	1.63	1.03	1.06	1.16
	MAP	94.8	97.0	98.8	96.9	94.1
MeSH	MR	12.8	12.4	1.31	1.30	1.40
	MAP	79.4	79.9	90.1	90.5	85.5

MR = Mean Rank

MAP = Mean Average Precision

Smaller values of β improve recognition performance

Binary Classification Evaluation performance

Test F1 scores of the Wordnet Nouns subtree:

Dataset	animal.n.01	group.n.01	worker.n.01	mammal.n.01
(Ganea et al., 2018)	$99.26 \pm 0.59\%$	$91.91 \pm 3.07\%$	$66.83 \pm 11.83\%$	$91.37 \pm 6.09\%$
Euclidean dist	$99.36 \pm 0.18\%$	$91.38\pm1.19\%$	$47.29 \pm 3.93\%$	$77.76 \pm 5.08\%$
$\log_0 + \text{Eucl}$	$98.27 \pm 0.70\%$	$91.41 \pm 0.18\%$	$36.66 \pm 2.74\%$	$56.11 \pm 2.21\%$
Ours ($eta=0.01$)	$99.77 \pm 0.17\%$	$99.86 \pm 0.03\%$	$96.32 \pm 1.05\%$	$97.73 \pm 0.86\%$

Conclusion

- We show that the Euclidean norm of the center of mass decreases as the curvature decreases
- The performance of the learned model can be improved by decreasing the curvature of the hyperboloid model
- Decreasing the curvature implicitly enforces high-level nodes to have smaller Euclidean norm than their descendants

Thank You! Welcome to our poster # 30