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Can we use autoencoders to learn meaningtul
representations of neurons from their gene expression?






What does a linear autoencoder learn?
&

What doesn’t a linear autoencoder learn?



Does |learn the principal subspace

X =UxXVT
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Doesn’t [earn the principal directions or eigenvalues

X =UxXVT WoW1 X

LWV, W) = || X — WoWW 1 X ||?
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Principal Directions of X Left Singular Vectors of W5

Elad Plaut, 2018, From Principal Subspaces to Principal Components with Linear Autoencoders



Adding Regularization

LW, Wa) = || X — WaW1 X||3

Lo (Wi, Wa) = L(W1, Wa) + X(||[Whl|7 + |[W2l|%)



Regularization and Orthogonality

1. Orthogonal matrices are the volume-preserving matrices of minimal Frobenius norm.

mjnHAH% s.t. det(A)® =1

R ——

2. Orthogonal matrices are the inverse matrices of minimal Frobenius norm.

in||A|l? Bll% s.t. AB =1
min | A|[f + | Bl[F st

In particular A = BTat all minima.



Scalar Case

Wi | Wy

(ZC . walaj‘)Q Critical points

2) Critical points

w1:QU2:O

Wol1 =— 1

W1 — W9 — 0
wowy = (1 — Ax™?)

w1 — W9
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danielkunin.github.io/Regularized-Linear-Autoencoders



Loss Functions

Unregularized:

LWL, W) = || X — WoW;, X

Product Regularized:

LWy, Wa) = LWy, Wa) + A

Sum Regularized:

[,U(Wl, WQ) = [:(Wl, WQ) —+- )\(
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The critical landscape is diffeomorphic to the space of pairs (Z, G) or (Z, O) with

« T CHAL,...,m}ofsize 0 <[ <k,

. G € R™ ! with independent columns,

. O € R**! \with orthonormal columns.
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The critical landscape is diffeomorphic to the space of pairs (Z, G) or (Z, O) with

« T CHl,...,m}ofsize 0 <[ <E,
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The critical landscape is diffeomorphic to the space of pairs (Z, G) or (Z, O) with

« T CHAL,...,m}ofsize 0 <[ <k,

. G € R™ ! with independent columns,

. O € R**! \with orthonormal columns.




Algebraic Topology of PCA

Reqularization reduces the symmetry from linear to orthogonal.

But LAEs are still over-parameterized, obscuring the gradient dynamics.

Issue: REXM o« PMXE is not the natural domain of PCA.




Algebraic Topology of PCA

Find the k-subspace nearest a point cloud in

Grk(

dim Gry(

%m

Natural domain is the Grassmannian manifold.

Points are subspaces. Distance is loss function.

"My 2 {(P=P° P=PT trP=k}C

M XM

") = k(m — k) Lx(P) =X — PX|[*



Algebraic Topology ot PCA
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Algebraic Topology ot PCA

,CX : Grg(

RY) —

(T]j) critical points are principal subspaces

Critical values are sums of eigenvalues

Connecting gradient trajectories are rotations

Loss is std saddle ([o-perfect Morse function)
LAE loss is degenerate std saddle (Morse-Bott)

Suggests principals, algorithms for deep learning



PCA Algorithms

PCA is a two-step optimization:

1. Train an L2-regularized LAE on X C R™*"

2. Apply SVD to the decoder Wy C R™*" @




PCA Algorithms

Gradient descent Solve for Wy, set Wy = W]



Prediction in artificial neural networks is inspired by the brain.
s learning in the brain inspired by artificial neural networks”
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Prediction in artificial neural networks is inspired by the brain.
s learning in the brain inspired by artificial neural networks”

Thm: L,-reqularized LAEs symmetrize.

Wa dynamically aligns to W by:

® maximizing tflow of information
® Mminimizing energy

LIA — ['pred T »Cinfo T »Creg



A linear autoencoder maps R™—R*—R™.
X WoW1 X

Wi X
| I Wi Wy I

LW, W) = || X — WoW X||?

LAEs learn the top principal subspace but
not the principal directions or eigenvalues.
The optimal latent representation is only
defined up to a linear map G € GL;(R™).

G, X
|I w, |G G| W, I

LAEs are pseudoinverses at all critical pts.

We prove that L2-regularized LAEs are
transposes at all critical points and learn
the principal directions as the left singular
vectors of the decoder. Define £, by

| X = WaWi X" + A([WA]* + [|Wal]?)

The minima of £, are defined up to an
orthogonal map O € O (R™) by

[WQ = U,(I — AX2)20 = ij

where X =UXVT and 07 > -+ > 07 > .

[ WoW; = Up(I — AZ3)UJT j

Background PCA Algorithms
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Symmetry and Backprop

Hence PCA is a two-step optimization:
1. Train L2-regularized LAE on X C R™*",

L2-reg LAEs are symmetric at all critical pts.

2. Apply SVD to the decoder Wy C R™*¥,

Step 2 is quick. Step 1 options include:
A. Gradient descent (below).
B. Solve for W5, set W, = W], iterate.

Posterior Collapse

Principal directions with eigenvalues
below A collapse as in probabilistic PCA.

Resolution to weight transport problem:

Backprop in lacks W
@O®@®) B5acrror !

because neurons gO one Way.
W11 1W2

A=0 A=2 A=4
Example of collapse for X = [2].

Learn as W, by maximizing flow

(“‘) of info and minimizing energy.
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Algebraic Topology

We smoothly parameterize the critical
manifolds of LAEs with several forms of

regularization via one elementary proof.

We factor the loss as a Morse function on
the Grassmannian to reveal the dynamics
near and between critical manifolds.
Morse homology suggests principles and
algorithms for deep learning.

XCcR® CGn(R3)ELR Vix H()

JUEA talks at broadinstitute.org/mia



In the last decade, biology has been transtformed by the ability to
perturb and measure biological systems at massive scale.

However, new ideas in ML are needed to translate biomedical data
into a mechanistic understanding ot biology and disease.

Biology and ML are poised to powertully advance one another.
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