

Breaking the Softmax Bottleneck via Monotonic Functions

Octavian Ganea, Sylvain Gelly, Gary Bécigneul, Aliaksei Severyn

Softmax Layer (for Language Models)

Natural language as conditional distributions

Parametric distributions & softmax:

$$P_{\theta}(x|c) = \frac{\exp \mathbf{h}_c^{\top} \mathbf{w}_x}{\sum_{x'} \exp \mathbf{h}_c^{\top} \mathbf{w}_{x'}} \approx P^*(x|c)$$

next word

context

Softmax Layer (for Language Models)

Natural language as conditional distributions

Parametric distributions & softmax:

$$P_{\theta}(x|c) = \frac{\exp \mathbf{h}_c^{\top} \mathbf{w}_x}{\sum_{x'} \exp \mathbf{h}_c^{\top} \mathbf{w}_{x'}} \approx P^*(x|c)$$

next word

context

ullet Challenge: Can we always find heta s.t. for all c : $\ P_{ heta}(X|c) = P^*(X|c)$

Softmax Layer (for Language Models)

Natural language as conditional distributions

Parametric distributions & softmax:

$$P_{\theta}(x|c) = \frac{\exp \mathbf{h}_{c}^{\top} \mathbf{w}_{x}}{\sum_{x'} \exp \mathbf{h}_{c}^{\top} \mathbf{w}_{x'}} \approx P^{*}(x|c)$$

next word

context

• Challenge: Can we always find θ s.t. for all c: $P_{\theta}(X|c) = P^*(X|c)$?

No, when embedding size < label cardinality (vocab size)!

What is the Softmax Bottleneck (Yang et al, '18)?

 $\bullet \quad \textbf{log-P matrix:} \quad \mathbf{A}_P = \begin{bmatrix} \log P(x_1|c_1) & \log P(x_2|c_1) & \dots & \log P(x_M|c_1) \\ \log P(x_1|c_2) & \log P(x_2|c_2) & \dots & \log P(x_M|c_2) \\ \vdots & \vdots & \ddots & \vdots \\ \log P(x_1|c_N) & \log P(x_2|c_N) & \dots & \log P(x_M|c_N) \end{bmatrix} \in \mathbb{R}^{N \times M}$ Label cardinality =

Vocabulary size

What is the Softmax Bottleneck (Yang et al, '18)?

$$\bullet \quad \textbf{log-P matrix:} \quad \mathbf{A}_P = \begin{bmatrix} \log P(x_1|c_1) & \log P(x_2|c_1) & \dots & \log P(x_M|c_1) \\ \log P(x_1|c_2) & \log P(x_2|c_2) & \dots & \log P(x_M|c_2) \\ \vdots & \vdots & \ddots & \vdots \\ \log P(x_1|c_N) & \log P(x_2|c_N) & \dots & \log P(x_M|c_N) \end{bmatrix} \in \mathbb{R}^{N \times M}$$

• Then: $\operatorname{rank}(A_{P_{\Theta}}) \leq d+1$

Number of labels = Vocabulary size

What is the Softmax Bottleneck (Yang et al, '18)?

```
log-P matrix: \mathbf{A}_P = \begin{bmatrix} \log P(x_1|c_1) & \log P(x_2|c_1) & \dots & \log P(x_2|c_2) \\ \log P(x_1|c_2) & \log P(x_2|c_2) \end{bmatrix}
But \mathbf{A}_{P^*} is likely full-rank, so \mathbf{A}_{P^*} \neq \mathbf{A}_{P\Theta} when d << \min(M, N)
```

Breaking the Softmax Bottleneck [1]

MoS [1]: Mixture of K Softmaxes

Breaking the Softmax Bottleneck [1]

MoS [1]: Mixture of K Softmaxes

Improves perplexity

Breaking the Softmax Bottleneck [1]

MoS [1]: Mixture of K Softmaxes

Improves perplexity

- Slower than vanilla softmax: 2 6.4x
- GPU Memory: M x N x K tensor
 Vanilla
 softmax

Breaking the Softmax Bottleneck [2]

Sig-Softmax [2] :

 $\operatorname{softmax}(2\mathbf{y} - \log(1 + \exp(\mathbf{y})))$

Breaking the Softmax Bottleneck [2]

• Sig-Softmax [2]:

$$\operatorname{softmax}(2\mathbf{y} - \log(1 + \exp(\mathbf{y})))$$

Small improvement over vanilla Softmax

Breaking the Softmax Bottleneck [2]

Sig-Softmax [2]:

Can we learn the best non-linearity to deform the logits?

• Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_j \exp(f(y_j))}$$
, i.e. $\operatorname{softmax}(f(\mathbf{y}))$

• Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_j \exp(f(y_j))}$$
, i.e. $\operatorname{softmax}(f(\mathbf{y}))$

• Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_j \exp(f(y_j))}$$
, i.e. $\operatorname{softmax}(f(\mathbf{y}))$

 $f: \mathbb{R} \to \mathbb{R}$ should be:

With unbounded image set -- to model sparse distributions

Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_{i} \exp(f(y_i))}$$
, i.e. $\operatorname{softmax}(f(\mathbf{y}))$

- 1. With **unbounded image set** -- to model sparse distributions
- 2. Continuous and (piecewise) differentiable -- for backprop

• Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_{i} \exp(f(y_i))}$$
, i.e. $\operatorname{softmax}(f(\mathbf{y}))$

- 1. With **unbounded image set** -- to model sparse distributions
- 2. Continuous and (piecewise) differentiable -- for backprop
- 3. **Non-linear** -- to break the softmax bottleneck

Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_{i} \exp(f(y_i))}$$
, i.e. $\operatorname{softmax}(f(\mathbf{y}))$

- 1. With **unbounded image set** -- to model sparse distributions
- 2. Continuous and (piecewise) differentiable -- for backprop
- 3. **Non-linear** -- to break the softmax bottleneck
- **4. Monotonic** -- to preserve the ranking of logits

• Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_{j} \exp(f(y_j))}$$
, i.e. $\operatorname{softmax}(f(\mathbf{y}))$

- 1. With **unbounded image set** -- to model sparse distributions
- 2. Continuous and (piecewise) differentiable -- for backprop
- **3. Non-linear** -- to break the softmax bottleneck
- **4. Monotonic** -- to preserve the ranking of logits
- **5.** Fast and memory efficient -- comparable w/ vanilla softmax

Our idea - learn a pointwise monotonic function on top of logits:

$$p(y_i) = \frac{\exp(f(y_i))}{\sum_j \exp(f(y_j))}, \text{ i.e. softmax}(f(y))$$

$$f: \mathbb{R} \to \mathbb{R} \text{ should be:}$$
1. With these properties are not restrictive in terms of rank deficiency.

Theorem: these properties differentiable -- for backprop.

Theorem: to break the softmax bottleneck.

- **Monotonic** -- to preserve the ranking of logits
- Fast and memory efficient -- comparable w/ vanilla softmax

Learnable parametric monotonic real functions

A neural network with 1 hidden layer and positive (constrained) weights [3]

$$f(x) = \sum_{i=1}^{K} v_i \sigma(u_i x + b_i) + b$$
, s.t. $v_i, u_i \ge 0$

Universal approximator for all monotonic functions (when K is large enough!)

• Goal: separate softmax bottleneck from context embedding bottleneck

- Goal: separate softmax bottleneck from context embedding bottleneck
- Sample N different categorical distributions with M outcomes:

$$P^*(\cdot|c_i) \sim \text{Dir}(\alpha)$$
, for $j = 1, \dots, N$

- Goal: separate softmax bottleneck from context embedding bottleneck
- Sample N different categorical distributions with M outcomes:

$$P^*(\cdot|c_i) \sim \text{Dir}(\alpha)$$
, for $j = 1, \dots, N$

• Goal:
$$P_{\theta}(x|c) = \frac{\exp \mathbf{h}_c^{\top} \mathbf{w}_x}{\sum_{x'} \exp \mathbf{h}_c^{\top} \mathbf{w}_{x'}} \approx P^*(x|c)$$

- Goal: separate softmax bottleneck from context embedding bottleneck
- Sample N different categorical distributions with M outcomes:

$$P^*(\cdot|c_i) \sim \text{Dir}(\alpha)$$
, for $j = 1, \dots, N$

- Goal: $P_{\theta}(x|c) = \frac{\exp \mathbf{h}_c^{\top} \mathbf{w}_x}{\sum_{x'} \exp \mathbf{h}_c^{\top} \mathbf{w}_{x'}} \approx P^*(x|c)$
- Independent context embeddings; shared word embeddings

Synthetic Experiments - Mode Matching (α =0.01)

• Percentage of contexts c for which $\operatorname{argmax}_x P^*(x|c) = \operatorname{argmax}_x P_{\Theta}(x|c)$

Synthetic Experiments - Mode Matching (α =0.01)

• Percentage of contexts c for which $\operatorname{argmax}_x P^*(x|c) = \operatorname{argmax}_x P_{\Theta}(x|c)$

• Similar results for cross-entropy and other values of α

Piecewise Linear Increasing Functions (PLIF)

- NN w/ 1 hidden layer ⇒ memory hungry:
 - Tensor of size N x M x K on GPU, where K >= 1000

Piecewise Linear Increasing Functions (PLIF)

- NN w/ 1 hidden layer ⇒ memory hungry:
 - Tensor of size N x M x K on GPU, where K >= 1000

PLIF:

Piecewise Linear Increasing Functions (PLIF)

- NN w/ 1 hidden layer ⇒ memory hungry:
 - Tensor of size N x M x K on GPU , where K >= 1000

PLIF:

- Forward & backward passes: just a lookup in two K dim vectors
- Memory and running time very efficient (comparable with Vanilla Softmax)

Language Modeling Results

	PENN TREEBANK				WIKITEXT-2			
	#PARAM	VALID PPL	TEST PPL	#SEC/EP	#PARAM	VALID PPL	TEST PPL	#SEC/EP
LINEAR-SOFTMAX w/ AWD-LSTM, w/o finetune (MERITY ET AL., 2017)	24.2M	60.83	58.37	~60	33M	68.11	65.22	~120
OURS LMS-PLIF, 10 ⁵ KNOTS w/ AWD-LSTM, w/o finetune	24.4M	59.45	57.25	~70	33.2M	67.87	64.86	~150
MoS, K = 15 w/ AWD-LSTM, w/o finetune (Yang et al., 2017)	26.6M	58.58	56.43	~150	33M	66.01	63.33	~550
MoS(15 comp) + our PLIF (10 ⁶ knots) w/ AWD-LSTM, w/o Fretune	28.6M	58-20	56.02	~220		(A.	.5.1	-

GPU Memory: N x M x K

GPU Memory: N x M

Thank you!

Poster #23