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Breaking the Softmax Bottleneck [1]
● MoS [1] : Mixture of K Softmaxes

● Improves perplexity

● Slower than vanilla softmax: 2 - 6.4x
● GPU Memory: M x N x K tensor 

Vanilla 
softmax
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Breaking the Softmax Bottleneck [2]

● Sig-Softmax [2] :

● Small improvement over vanilla Softmax
Can we learn the best non-linearity to deform the logits ?

[2] Sigsoftmax: Reanalysis of the Softmax Bottleneck, S. Kanai et al., NIPS 2018

https://arxiv.org/abs/1805.10829
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Can we do better ?
● Our idea - learn a pointwise monotonic function on top of logits:

                     should be:

1. With unbounded image set -- to model sparse distributions
2. Continuous and (piecewise) differentiable -- for backprop
3. Non-linear -- to break the softmax bottleneck
4. Monotonic -- to preserve the ranking of logits
5. Fast and memory efficient -- comparable w/ vanilla softmax

Theorem: these properties are not restrictive in terms of rank deficiency 



Learnable parametric monotonic real functions
● A neural network with 1 hidden layer and positive (constrained) weights [3]

● Universal approximator for all monotonic functions (when K is large enough !)

[3] Monotone and Partially Monotone Neural Networks, Daniels and Velikova, 2010, IEEE TRANSACTIONS ON NEURAL NETWORKS
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● Goal:

● Independent context embeddings; shared word embeddings
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● Similar results for cross-entropy and other values of 𝜶 

Synthetic Experiments - Mode Matching  (𝜶=0.01)
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Piecewise Linear Increasing Functions (PLIF)
● NN w/ 1 hidden layer ⇒ memory hungry:

○ Tensor of size N x M x K on GPU , where K >= 1000

● PLIF:

● Forward & backward passes: just a lookup in two K dim vectors
● Memory and running time very efficient (comparable with Vanilla Softmax)



Language Modeling Results

GPU Memory: N x MGPU Memory: N x M x K



Thank you!
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