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@ To learn representations of graphs by generalizing convolutions
@ while keeping all the nice properties of CNNs being able to

e detect shift-invariant graph patterns by the filters
e enlarge the receptive fields by multi-layer architecture
e identify the critical parts (critical structures) most important to the

jointly learned task
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What are the critical structures?

@ Local-Scale Critical Structures: Alkane vs Alcohol
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@ Global-Scale Critical Structures: Symmetric vs Asymmetric
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STOA: Graph Attention Networks (Bengio et al. ICLR'18)

@ The 1-head self-attentional network (1-head GAT) is the
state-of-the-art solution to the problem

@ 1-head GAT learns the attention score «j; for each edge (1, )
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@ In supervised tasks, o are the critical structures
" ayjj represents the contribution of edge (i, j) to the model prediction

Ruo-Chun Tzeng, Shan-Hung Wu (Microsoft Ego-CNN ICML 2019 3/9



Drawback: limited learning ability

@ However, learning « sacrifices the learning ability
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@ It is not obvious in node classification, but severely affects the
performance in graph classification
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A fix: Ego-CNN

@ Our idea: learning critical structures by the filters just like CNNs
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o The filter of Ego-CNN captures the interaction of nodes in N;
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Challenge: variable-sized NV; makes W ill-defined

o HO) = o (£ & WO 1 60), where EO e HO
o How to define N\;?

@ In Ego-CNN, we define V; as the top K nodes in the L-hop
ego-networks at the L-th layer
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Improved learning ability on graph classification

@ Graph classification benchmark datasets

Table: Bioinformatic Datasets

Dataset MUTAG PTC PROTEINS NCI1

WL kernel 82.1 57.0 73.0 822
DGK 82.7 57.3 717 62.5
Subgraph2vec 87.2 60.1 734 80.3

Table: Social Network Datasets

Dataset _ IMDB (B) IMDB (M) REDDIT (B) COLLAB

MLG 842 636 761 8038 DGK 67.0 446 780 730
Structure2vec  88.3 83.7 Patchy-San 71.0 45.2 86.3 726
1-head GAT 70.0 78.8
DCNN 67.0 56.6 62.6 Ego-CNN 723 48.1 87.8 74.2
Patchy-San 92.6 60.0 75.9 78.6
1-head GAT 81.0 57.0 725 74.3
Ego-CNN 93.1 63.8 738 80.7

e With K = 16, Ego-CNN is comparable to the state-of-the-arts
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Ego-CNN can learng critical structure WITHOUT «

o Backtracking W with CNN visualization techniques shows the
identified critical structures

Local-Scale: Alkane vs Alcohol | Global-Scale: Symmetric vs Asymmetric
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(b) Ce2H16sOH (d) Asymmetric Isomer

Table: Visualization of the critical structures detected by Ego-CNN
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More benefits... and let's chat at Pacific Ballroom+#22

@ Ego-CNN can detect self-similar patterns

e i.e., same ptterns that exist at different zoom levels
e commonly exist in social networks

e How?
e By simply tying the weights (W's) across different layers
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@ For more details, let's chat at Pacific Ballroom#22 6:30-9:00 PM
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