Distributed, Egocentric Representations of Graphs for Detecting Critical Structures

Ruo-Chun Tzeng¹ Shan-Hung Wu²

¹Microsoft Inc, Taiwan

²National Tsing Hua University, Taiwan

36th International Conference on Machine Learning

Goal

- To learn representations of graphs by generalizing convolutions
- while keeping all the nice properties of CNNs being able to
 - detect shift-invariant graph patterns by the filters
 - enlarge the receptive fields by multi-layer architecture
 - identify the critical parts (critical structures) most important to the jointly learned task

What are the critical structures?

Local-Scale Critical Structures: Alkane vs Alcohol

Alkane		Alcohol	
H H H-C-C- I I H H	$egin{array}{c} H \ \cdot \cdot \cdot - \stackrel{ }{C} - H \ H \end{array}$	H H H-C-C- ·· H H	$ \begin{array}{ccc} H & H \\ -C & O \\ H \end{array} $

• Global-Scale Critical Structures: Symmetric vs Asymmetric

asymmetric	symmetric		
$\begin{matrix} H \\ H \ \ \ \ \ \ \ \ \ \ \ \ \$	H, H H H H H H H H H H		

STOA: Graph Attention Networks (Bengio et al. ICLR'18)

- The 1-head self-attentional network (1-head GAT) is the state-of-the-art solution to the problem
- 1-head GAT learns the attention score α_{ii} for each edge (i, j)

$$\overrightarrow{h_i'} = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} W \overrightarrow{h_j} \right)$$

• In supervised tasks, α are the critical structures α_{ii} represents the contribution of edge (i,j) to the model prediction

Drawback: limited learning ability

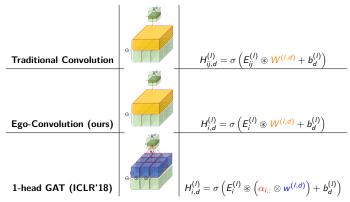
ullet However, learning lpha sacrifices the learning ability

$$\overrightarrow{h'_i} = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} W \overrightarrow{h_j} \right)$$

 It is not obvious in node classification, but severely affects the performance in graph classification

A fix: Ego-CNN

Our idea: learning critical structures by the filters just like CNNs



ullet The filter of Ego-CNN captures the interaction of nodes in \mathcal{N}_i

Challenge: variable-sized \mathcal{N}_i makes W ill-defined

•
$$H_{i,d}^{(I)} = \sigma\left(E_i^{(I)} \circledast W^{(I,d)} + b_d^{(I)}\right)$$
, where $E_i^{(I)} = ||_{j \in \mathcal{N}_i} H_j^{(I-1)}$

- How to define \mathcal{N}_i ?
- In Ego-CNN, we define \mathcal{N}_i as the top K nodes in the L-hop **ego**-networks at the L-th layer

Improved learning ability on graph classification

Graph classification benchmark datasets

Table: Bioinformatic Datasets

Dataset	MUTAG	PTC	PROTEINS	NCI1
WL kernel	82.1	57.0	73.0	82.2
DGK	82.7	57.3	71.7	62.5
Subgraph2vec	87.2	60.1	73.4	80.3
MLG	84.2	63.6	76.1	80.8
Structure2vec	88.3			83.7
DCNN	67.0	56.6		62.6
Patchy-San	92.6	60.0	75.9	78.6
1-head GAT	81.0	57.0	72.5	74.3
Ego-CNN	93.1	63.8	73.8	80.7

Table: Social Network Datasets

Dataset	IMDB (B)	IMDB (M)	REDDIT (B)	COLLAB
DGK	67.0	44.6	78.0	73.0
Patchy-San	71.0	45.2	86.3	72.6
1-head GAT	70.0	-	78.8	-
Ego-CNN	72.3	48.1	87.8	74.2

ullet With K=16, Ego-CNN is comparable to the state-of-the-arts

Ego-CNN can learng critical structure WITHOUT α

 Backtracking W with CNN visualization techniques shows the identified critical structures

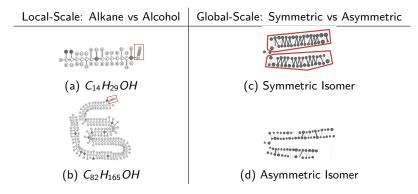
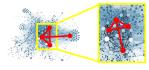


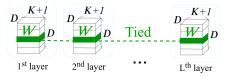
Table: Visualization of the critical structures detected by Ego-CNN

More benefits... and let's chat at Pacific Ballroom#22

- Ego-CNN can detect self-similar patterns
 - i.e., same ptterns that exist at different zoom levels
 - commonly exist in social networks



- How?
 - By simply tying the weights (W's) across different layers



For more details, let's chat at Pacific Ballroom#22 6:30-9:00 PM