ICML | 2019

Thirty-sixth International Conference on Machine Learning

Learning Distance for Sequences by Learning a Ground Metric

Bing Su

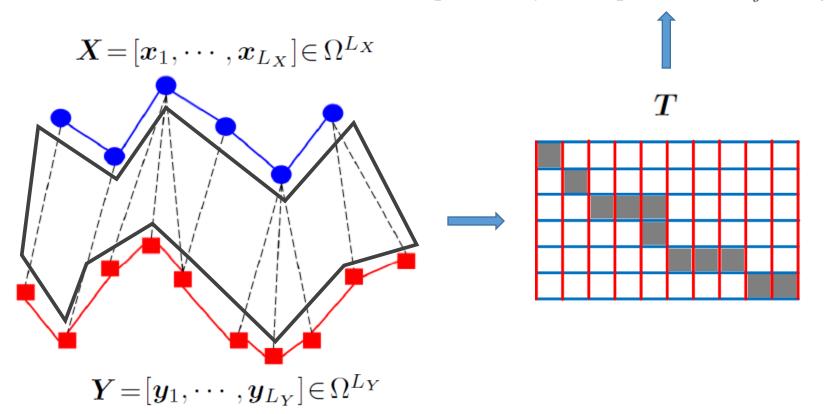
Ying Wu

Motivation

• Distance between sequences depends on *temporal* alignment to eliminate the local temporal discrepancies.

Temporal alignment

 $t_{i,j} = T(i,j)$ indicates whether or the probability of the pair x_i and y_j is aligned.



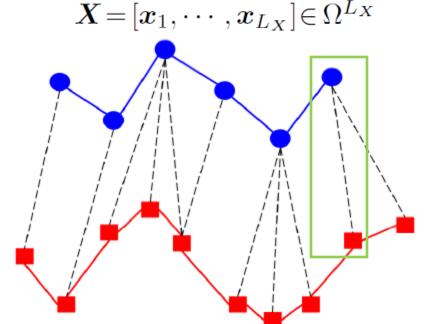
Motivation

• The inference of alignment depends on the *ground metric* between elements in sequences.

Let Ω be a space, $d(M): \Omega \times \Omega \to \mathbb{R}$ be the metric on this space.

Ground metric

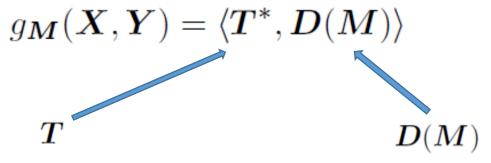
 $\boldsymbol{D}(\boldsymbol{M}) := [d(\boldsymbol{M}, \boldsymbol{x}_i, \boldsymbol{y}_j)]_{ij} \in \mathbb{R}^{L_X \times L_Y}$



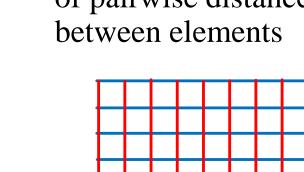
$$\boldsymbol{Y} = [\boldsymbol{y}_1, \cdots, \boldsymbol{y}_{L_Y}] \in \Omega^{L_Y}$$

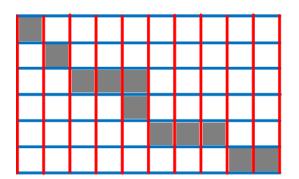
A Unified Perspective

• Distance between two sequences: a general formulation



The *temporal alignment* matrix





The *ground metric* matrix of pairwise distances between elements

A Unified Perspective

• T* is generally inferred by

$$T^* = \underset{T \in \Phi}{arg \min} \langle T, D(M) \rangle + \mathscr{R}(T)$$

- Φ is the feasible set of T, which is a subset of $\mathbb{R}^{L_X \times L_Y}$ with some constraints; $\mathscr{R}(T)$ is a regularization term.
- Different distance measures for sequences differ in the constraints imposed to the feasible set, the regularization term, and the optimization method.

A Unified Perspective

• Connection to *dynamic time warping (DTW)*

$$\mathcal{R}(T) = 0;$$

$$\Phi = \{T \in \{0, 1\}^{L_X \times L_Y} | T_{1,1} = 1, T_{L_X, L_Y} = 1; T \mathbf{1}_{L_Y} > \mathbf{0}_{L_X}, T^T \mathbf{1}_{L_X} > \mathbf{0}_{L_Y};$$

$$if \ t_{i,j} = 1, then \ t_{i-1,j+1} = 0, t_{i+1,j-1} = 0, \ \forall 1 < i < L_X, 1 < j < L_Y\}$$

DTW infers T via dynamic programming.

• Connection to *order-preserving Wasserstein distance* (OPW)

$$\begin{split} \mathscr{R}(\boldsymbol{T}) &= \lambda_1 I(\boldsymbol{T}) + \lambda_2 K L(\boldsymbol{T} || \boldsymbol{P}); \\ \boldsymbol{\Phi} &= \{ \boldsymbol{T} \in \mathbb{R}_+^{L_X \times L_Y} || \boldsymbol{T} \boldsymbol{1}_{L_Y} = \frac{1}{L_X} \boldsymbol{1}_{L_X}, \; \boldsymbol{T}^T \boldsymbol{1}_{L_X} = \frac{1}{L_Y} \boldsymbol{1}_{L_Y} \} \end{split}$$

OPW infers T by the Sinkhorn's matrix scaling algorithm.

Problem

- The distance between sequences is formulated as a function of the ground metric: *meta-distance*
- Learn meta-distance by learning the ground metric
- Given a set of N training sequences and the corresponding labels, $\{X^n, z^n\}_{n=1}^N$ $X^n = [x_1, \dots, x_{L^n}] \in \mathbb{R}^{b \times L^n}$
- Learn a meta-distance $g_{M}(X^{n}, X^{n'})$ by learning a Mahalanobis distance as the ground metric:

$$d(\boldsymbol{M}, \boldsymbol{x}_i, \boldsymbol{y}_j) = (\boldsymbol{x}_i - \boldsymbol{y}_j)^T \boldsymbol{M} (\boldsymbol{x}_i - \boldsymbol{y}_j)$$

- ullet $M = WW^T$, $W \in \mathbb{R}^{b imes b'}$
- Goal: with the learned W, the resulting meta-distance

$$g_{\boldsymbol{M}}(\boldsymbol{X}^n, \boldsymbol{X}^{n'}) = g_{\boldsymbol{I}}(\boldsymbol{W}^T \boldsymbol{X}^n, \boldsymbol{W}^T \boldsymbol{X}^{n'})$$

better separates sequences from different classes.

Objective

- Regressive virtual sequence metric learning (RVSML)
- Associate a virtual sequence $V^n = [v_1, \dots, v_{l^n}] \in \mathbb{R}^{b' \times l^n}$ with each training sequence X^n
- Minimize the meta-distances between the training sequences and their associated virtual sequences

$$\min_{\boldsymbol{W}} \frac{1}{N} \sum_{n=1}^{N} g_{\boldsymbol{I}}(\boldsymbol{W}^{T} \boldsymbol{X}^{n}, \boldsymbol{V}^{n}) + \beta \|\boldsymbol{W}\|_{\mathcal{F}}^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \langle \boldsymbol{T}^{n*}, \boldsymbol{D}_{\boldsymbol{I}}^{n}(\boldsymbol{W}) \rangle + \beta \|\boldsymbol{W}\|_{\mathcal{F}}^{2}$$

$$s.t. \, \boldsymbol{T}^{n*} = \underset{\boldsymbol{T} \in \boldsymbol{\Phi}}{arg \min} \langle \boldsymbol{T}^{n}, \boldsymbol{D}_{\boldsymbol{I}}^{n}(\boldsymbol{W}) \rangle + \mathscr{R}(\boldsymbol{T}^{n})$$

• If $\mathcal{R}(T)$ does not depend on W, it is equivalent to

$$\min_{\boldsymbol{W},\boldsymbol{T}^n} \frac{1}{N} \sum_{n=1}^{N} \langle \boldsymbol{T}^n, \boldsymbol{D}_{\boldsymbol{I}}^n(\boldsymbol{W}) \rangle + \beta \|\boldsymbol{W}\|_{\mathcal{F}}^2 + \mathscr{R}(\boldsymbol{T}^n)$$

Optimization

$$\min_{\boldsymbol{W},\boldsymbol{T}^n} \frac{1}{N} \sum_{n=1}^{N} \langle \boldsymbol{T}^n, \boldsymbol{D}_{\boldsymbol{I}}^n(\boldsymbol{W}) \rangle + \beta \|\boldsymbol{W}\|_{\mathcal{F}}^2 + \mathcal{R}(\boldsymbol{T}^n)$$

• Fix T^n , optimize W: standard regression, closed form solution

$$\boldsymbol{W}^* = \boldsymbol{A}^{-1} \left(\sum_{n=1}^{N} \sum_{i=1}^{L^n} \sum_{j=1}^{l^n} t_{ij}^n \boldsymbol{x}_i^n \boldsymbol{v}_j^{nT} \right) \quad \boldsymbol{A} = \sum_{n=1}^{N} \sum_{i=1}^{L^n} \sum_{j=1}^{l^n} t_{ij}^n \boldsymbol{x}_i^n \boldsymbol{x}_i^{nT} + \beta N \boldsymbol{I}$$

• Fix W, optimize T^n : standard inference, e.g. DTW, OPW

$$\boldsymbol{T}^{n*} = \mathop{arg\,\mathrm{min}}_{\boldsymbol{T}^n \in \boldsymbol{\Phi}} \langle \boldsymbol{T}^n, \boldsymbol{D}_{\boldsymbol{I}}^n(\boldsymbol{W}) \rangle + \mathscr{R}(\boldsymbol{T}^n)$$

• Guaranteed convergence

Evaluation

- Generating $V^n = f(X^n, z^n) = [e_{(z^n-1)m+1}, \cdots, e_{(z^n-1)m+m}]$
- RVSML instantiated by (a) DTW and (b) OPW using the NN classifier with the (a) DTW and (b) OPW distance
- Comparison with other metric learning methods on the ChaLearn

and SAD datasets

(a) DTW

MAP	Accuracy
11.75	61.12
13.46	52.17
11.67	63.78
31.21	83.79
21.30	84.37
14.39	64.45
33.83	87.38
	11.75 13.46 11.67 31.21 21.30 14.39

	/1 N	_	\D	** *
- 1	h	۱ (שו	1/1/
	U	, ,	,,	W

(8) 31 11		
Method	MAP	Accuracy
Ori (Su & Hua, 2018)	12.21	59.38
ITML (Davis et al., 2007)	13.92	64.71
LMNN (Weinberger & Saul, 2009)	12.07	62.83
RVML (Perrot & Habrard, 2015)	30.19	80.66
LDMLT (Mei et al., 2014)	21.56	82.74
SWMD (Huang et al., 2016)	15.36	60.31
RVSML	33.07	83.82

(a) DTW

Method	MAP	Accuracy
Ori (Su & Hua, 2018)	56.58	96.36
ITML (Davis et al., 2007)	51.13	95.55
LMNN (Weinberger & Saul, 2009)	56.25	96.00
SCML (Shi et al., 2014)	47.98	93.27
RVML (Perrot & Habrard, 2015)	57.94	96.59
LDMLT (Mei et al., 2014)	59.54	96.50
SWMD (Huang et al., 2016)	52.44	93.95
RVSML	60.24	96.23

(b) OPW

Method	MAP	Accuracy
Ori (Su & Hua, 2018)	59.77	96.36
ITML (Davis et al., 2007)	54.51	96.36
LMNN (Weinberger & Saul, 2009)	59.33	96.27
SCML (Shi et al., 2014)	50.08	94.50
RVML (Perrot & Habrard, 2015)	60.71	95.77
LDMLT (Mei et al., 2014)	61.07	96.73
SWMD (Huang et al., 2016)	58.00	95.41
RVSML	65.63	97.09

Results

• Comparison with state-of-the-art methods on the MSR Activity3D

Method

Accuracy

and MSR Action3D datasets

		Actionlet Ensemble (Wang et al., 2012)	
Method	Accuracy	Moving Pose (Zanfir et al., 2013)	
Method	Accuracy	$COV-J_{\mathcal{H}}-SVM$ (Harandi et al., 2014)	
Actionlet Ensemble (Wang et al., 2012)	85.8%	Ker-RP-POL (Wang et al., 2015)	
Moving Pose (Zanfir et al., 2013)	73.8%	Ker-RP-RBF (Wang et al., 2015)	
$COV-J_{\mathcal{H}}$ -SVM (Harandi et al., 2014)	75.5%	Kernelized-COV (Cavazza et al., 2016)	
Ker-RP-POL (Wang et al., 2015)	96.9%	SCK+DCK (Koniusz et al., 2016)	
Ker-RP-RBF (Wang et al., 2015)	96.3%	TS-LSTM-GM (Lee et al., 2017)	
Kernelized-COV (Cavazza et al., 2016)	96.3%	FTP-SVM (Ben Tanfous et al., 2018)	
Luo et al. (Luo et al., 2017)	86.9%	Bi-LSTM (Ben Tanfous et al., 2018)	
Ji et al. (Ji et al., 2018)	81.3%	RVSML-DTW+Kernelized-COV	
DSSCA SSLM (Shahroudy et al., 2018)	97.5 %	RVSML-OPW+Kernelized-COV	
RVSML-DTW+Kernelized-COV	96.9%	RVSML-DTW+TS-LSTM-GM	
RVSML-OPW+Kernelized-COV	97.5 %	RVSML-OPW+TS-LSTM-GM	

- Please visit our poster for more details.
- Thank you very much!