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by Learning a Ground Metric




Motivation

* Distance between sequences depends on temporal
alignment to eliminate the local temporal discrepancies.

t,;=T(i.j) indicates whether or the

Temporal alignment probability of the pair z; and y; is aligned.
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Motivation

* The inference of alignment depends on the ground metric
between elements In sequences.

Let Q be a space, d(M) : @ x Q — R

be the metric on this space. — Ground metric
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A Unified Perspective

* Distance between two sequences: a general formulation

Y)=(I",D(M))
"N

The temporal alignment The ground metrlc matrix
matrix of pairwise distances
between elements




A Unified Perspective

* T* Is generally inferred by

T* =argmin (T, D(M)) + 2%(T)
Tcd

- & is the feasible set of T, which is a subset of REx>Lv
with some constraints; % (I") is a regularization term.

« Different distance measures for sequences differ in the
constraints imposed to the feasible set, the regularization
term, and the optimization method.



A Unified Perspective

« Connection to dynamic time warping (DTW)
Z(T) = 0;

d={Tec{0o, V"™, =1.T, 1, =1, Ty, >0,,..TT1;, >0;,:

iftij=1thent,_y j11=0t11;-1 =0 Vl<i<Lx,1<j<Ly}

DTW infers T via dynamic programming.

« Connection to order-preserving Wasserstein distance
(OPW)

Z(T) = MI(T)+ o KL(T||P):
& = (T eRy™ Ty, =1, TT1, =1L 1,.}

OPW infers T by the Sinkhorn’s matrix scaling algorithm.



Problem

 The distance between sequences Is formulated as a
function of the ground metric: meta-distance

 L_earn meta-distance by learning the ground metric

* Glven a set of N training sequences and the corresponding
labels, { X, 2" ;?:l X" =[x, -+, xpn] € Rb6XL™

» Learn a meta-distance gn(X™, X™) by learning a
Mahalanobis distance as the ground metric:

d(M'mf'yj) = (@; — yj)TM(iF-s. — y;‘)
M =WWT W eRXV
 Goal: with the learned W, the resulting meta-distance
g (X" X" ) =g (WX WTX™)
better separates sequences from different classes.



Objective

 Regressive virtual sequence metric learning (RVSML)

» Associate a virtual sequence V" =[vy, -+ ,vjn]€ RV <"
with each training sequence X"

« Minimize the meta-distances between the training
seguences and their assoclated virtual sequences

11€V111 =S Z gr(WHX" V") + 3|W|%
n=1

' N : . ¢
=x X (T DF (W) + B W |z
st. T =argmin (T", D}(W)) + Z(T")
Ted

o If 2(T) does not depend on W, 1t Is equivalent to

min —Z T".D}(W)) + 3|W % +2(T")



Optimization

#1%1?2 (T". D} (W) + B|W % +2(T")

n=1

« Fix T, optimize W: standard regression, closed form

/solution \
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KFix W, optimize T standard inference, e.g. DTW, OPW /

T"* = argmin (T", D} (W)) + 2Z(T")
Tred

» Guaranteed convergence



Evaluation

¢ Genel‘ating V" :}((X” 2" ) — [e(:”—l)m—}—l- T e(:”‘—l}m—i—m]
 RVSML Instantiated by (a) DTW and (b) OPW using the
NN classifier with the (a) DTW and (b) OPW distance

« Comparison with other metric learning methods on the ChalLearn
and SAD datasets (@) DTW

(a) DTW Method MAP  Accuracy

— Ori (Su & Hua, 2018) 56.58 96.36
Method MAP _ Accuracy ITML (Davis et al., 2007) 5113 95.55
Ori (Su & Hua, 2018) 11.75 61.12 LMNN (Weinberger & Saul, 2009)  56.25 96.00
ITML (Davis et al., 2007) 13.46 52.17 SCML (Shi et al., 2014) 47.98 03.27
LMNN (Weinberger & Saul, 2009)  11.67 63.78 RVML (Perrot & Habrard. 20153) 57.94 96.59
RVML (Perrot & Habrard, 2015) 31.21 83.79 LDMLT (Mei et al., 2014) 59.54 96.50
LDMLT (Mei et al., 2014) 21.30 84.37 SWMD (Huang et al., 2016) 52.44 93.95
SWMD (Huang et al., 2016) 14.39 64.45 RVSML 60.24 96.23
RVSML 33.83 §7.38

(b) OPW
(b) OPW
Method MAP  Accuracy

Method MAP _ Accuracy Ori (Su & Hua, 2018) 5977 96.36
Ori (Su & Hua, 2018) 12.21 590.38 ITML (Davis et al., 2007) 54.51 96.36
ITML (Davis et al., 2007) 13.92 64.71 LMNN (Weinberger & Saul, 2009)  59.33 96.27
LMNN (Weinberger & Saul, 2009)  12.07 62.83 SCML (Shi et al., 2014) 50.08 94.50
RVML (Perrot & Habrard, 2015) 30.19 80.66 RVML (Perrot & Habrard, 2015) 60.71 95.77
LDMLT (Mei et al., 2014) 21.56 82.74 LDMLT (Mei et al., 2014) 61.07 96.73
SWMD (Huang et al., 2016) 15.36 60.31 SWMD (Huang et al., 2016) 58.00 95.41

RVSML 33.07 83.82 RVSML 65.63 97.09




Results

« Comparison with state-of-the-art methods on the MSR Activity3D
and MSR Action3D datasets

Method Accuracy
Actionlet Ensemble (Wang et al., 2012) 88.2%
Method Accuracy Moving Pose (Zanfir et al., 2013) 91.7%
‘ COV-J%-SVM (Harandi et al., 2014) 80.4%
Actionlet Ensemble (Wang et al., 2012) 83.8% Ker-RP-POL (Wang et al., 2015) 96.2%
Moving Pose (Zanfir et al., 2013) 73.8% Ker-RP-RBF (Wang et al., 2015) 96.9 %
COV-.J2-SVM (Harandi et al., 2014) 75.5% Kernelized-COV (Cavazza et al., 2016) 96.2%
Ker-RP-POL (Wang et al., 2015) 96.9% SCK+DCK (Koniusz et al., 2016) 91.45%
Ker-RP-RBF (Wang et al., 2015) 96.3% TS-LSTM-GM (Lee et al., 2017) 91.21%
Kernelized-COV (Cavazza et al., 2016) 96.3% FTP-SVM (Ben Tanfous et al., 2018) 90.01%
Luoetal. (Luoetal., 2017) 86.9% Bi-LSTM (Ben Tanfous et al., 2018) 86.18%
Jietal. (Jietal., 2018) 81.3% RVSML-DTW+Kernelized-COV 82.78%
DSSCA SSLM (Shahroudy et al., 2018) 97.5% RVSML-OPW+Kernelized-COV 96.34 %
RVSML-DTW+Kernelized-COV 96.9% RVSML-DTW+TS-LSTM-GM 93.04%
RVSML-OPW+Kernelized-COV 97.5% RVSML-OPW+TS-LSTM-GM 90.48%

* Please visit our poster for more details.
 Thank you very much!



