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Modelling in Discrete Choice

» Data of the form (z, C) where “alternative x is chosen from the set C'”
and C'is a subset of X, the universe of N alternatives

» Discrete choice setftings are ubiquitous
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Encompasses Many Fields

Virtual Assistants

Inverse reinforcement learning

Structural Modeling

Recommender Systems



Independence of Irrelevant
Alternatives (lIA)

» Fully determines the workhorse Multinomial Logit (MNL) Model
» Main (stfrong) assumption:

T,y €A Pr(z from A)  Pr(z from B)
x,y €B

4 Pr(y from A)  Pr(y from B)

» The Good:
» inferentially tractable, powerful, and interpretable
» The

» When IIA does not hold, out of sample predictions are wildly
miscalibrated

» Cannot account for the wide literature on context effects (e.g.
Compromise Effect)
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Problems we address

» Modelling individual choice behavior
» Behavioral economics “*anomalies” are all over the place

» Search Engine Ads (leong-Mishra-Sheffet '12, Yin et al. '14)

» Google Web Browsing Choices (Benson-Kumar-Tomkins '16)

» Need to model while retaining parametric and inferential efficiency T .
ad group quality

» Stafistical tests for violations of A

» General, global tests are intractable (Seshadri & Ugander ‘19, Long & Freese ‘05)

» Model based approaches challenging due to identifiability issues (Cheng & Long,
‘07)



Context Dependent Utility Model
(CDM)

exp(u(z | €))
>yecexp(u(y | C))

Universal logit model (McFadden et al., '77)

Pz |C)=

Developing the CDM
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Context Dependent Utility Model

(C D M ) Decompose the
model (Batsell & u(z | C) = v(z) + x| {y})+
Polking, '85) e y;c:\;c
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Universal logit model (McFadden et al., '77) B ordor
Truncate to 2nd
order (effects
are pairwise)
BEo) = )
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Full Rank CDM

Developing the CDM
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Context
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Dependent Utility Model

Decompose the
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Universal logit model (McFadden et al
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A Theoretical Preview

|dentifiability

Sufficient:

Theorem. A CDM is identifiable from a dataset D
if Cp contains comparisons over all choice sets of two
sizes k, k', where at least one of k, k" is not 2 or n.

Necessary:.

Theorem. No rankr CDM, 1 <r <mn, is

identifiable from a dataset D if Cp contains only
choices from sets of a single size.

More generally:

Theorem. A full rank CDM is identifiable from a
dataset D if and only if the rank of an integer

design matriz G(D), properly constructed, is
n(n—1)—1.




A Theoretical Preview

|dentifiability

Convergence Guarantees

Sufficient:

Theorem. A CDM is identifiable from a dataset D
if Cp contains comparisons over all choice sets of two

i 9 n(n—1)
E||lamLe(DP) — v* <cpg. ———

sizes k, k', where at least one of k, k" is not 2 or n. [ H ( ) ”2 ] T ’

NGCGSSOW: where the expectation is taken over the

Theorem. No rankr CDM, 1< r < n, is dataset D containing m samp.les;

identiftable from a dataset D if Cp contains only where Emax refers to the maximum

choices from sets of a single size.

choice set size in the dataset, and
CB,kmayx 15 & constant that depends on
the structure of the design
: trix G(D).
More generally: = D
Theorem. A full rank CDM is identifiable from a
dataset D if and only if the rank of an integer

design matriz G(D), properly constructed, is
n(n—1)—1.
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A(D) =

a Likelihood Ratio Statistic where O1,ce

Hypothesis Testing

SUPYeOLuce COcDM L(D|0)

SUPgeOcpm E(D | 9)

and ©cpm respectively refer to the
parameter classes of Luce and CDM Models.
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Convergence Guarantees

E[|Jamre(D) — w3 ] < B ke -

where the expectation is taken over the
dataset D containing m samples,
where k. refers to the maximum
choice set size in the dataset, and
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Unitying Existing Choice Models

Low Rank CDM

eXp((ZzeC\m Cz)Tt:I:)

e C - ZyEC eXp((ZzEC\y CZ)Tty)‘




Unitying Existing Choice Models
b

Tversky-Simonson Model

u'®(z | C) = w(C)Tt,
(Tversky & Simonson, 1993)

B C) =

Low Rank CDM

eXp((ZzEC\m Cz)Tt:J:)

Zyec exp((ZzEC\y CZ)Tt’U) ‘




Unitying Existing Choice Models

Tversky-Simonson Model \

T
(Tversky & Simonson, 1993) P(JE ‘ C) a’ eXp((ZzEC\m & 1)

Zyec exp((ZzEC\y CZ)Tt’U) ‘

Batsell-Polking Model

P C
log r(:v | ) = Oy =18 Z Ky

P )
r(y | C) 20N z,y)
(Batsell & Polking, 1985)




Unitying Existing Choice Models

Tversky-Simonson Model \

(Tversky & Simonson, 1993) eXp((ZzEC\:}: Cz)Tt:r:)
' Pz |C)= s OEEe
yel zeC\y % Yy

Batsell-Polking Model
Pr(xz | C)
log = Oy ol Z Ky
P
(Batsell & Polking, 1985)

Blade-Chest Model

exp(t ¢y)
exp(tlc,) +exp(tc,)

Pr(z [{z,y}) =

(Chen & Joachims, 2016)




An Empirical Preview: Performance
and Interpretabllity



An Empirical Preview: Performance
and Interpretability
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r, Rank/Mixtures r, Rank/Mixtures

» Transportation Preferences (Koppelman & Bhat, ‘06)

» Survey of fransportation choices for residents in
various San Francisco neighborhoods

» Low Rank CDMs significantly outperform MNL
and MMNL




An Empirical Prev
and Interpretabllity
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» Transportation Preferences (Koppelman & Bhat, ‘06)

ew: Performance

» Not Like the Other (Heikinheimo & Ukkonen, *13)

» Individuals are shown triplets of nature photographs

SFwork

» asked to choose photo most unlike the other two

» CDM illustrates intuitive property of dataset: similar items
have negative target-context inner product

» Induces grouping by similarity in both target and
context vectors

r, Rank/Mixtures r, Rank/Mixtures

CDM Target Vectors, r=2 CDM Context Vectors, r=2

>

>

Survey of fransportation choices for residents in
various San Francisco neighborhoods

Low Rank CDMs significantly outperform MNL
and MMNL




Conclusions

» CDM models context effects with efficiency guarantees and enables
practical tests of lIA

» Can be easily applied to many pipelines by moditying “the final layer”
» Simultaneously brings both:

» Machine Learning rigor to Econometrics models (identifiability, convergence)

» Econometrics modeling (choice set effects) into Machine Learning research

Thanks!!
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