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Multi-label Classification (MLC)
• Goal: learn a function f that maps instances to a subset of labels

• It is important to take into account label dependencies.
• Joint probability of labels
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Maximization of the joint probability
• Traditional approaches for minimizing subset 0/1 loss:
• (Probabilistic) classifier chain

Y = {Sea, Desert, Building, Sky, Cloud, Mountain} 1. Creates a chain of L labels
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2. Train L independent classifiers 
given input and partial label vector

f1

Additional input features

f2 f3 f4 f5 f6

(Dembczyński et al., ICML 2010; Read et al., MLJ 2011)
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2. Train L independent classifiers 
given input and partial label vector

• Error-propagation at test time
• Effect of label orders in the chain

f1

Additional input features

f2 f3 f4 f5 f6

(Dembczyński et al., ICML 2010; Read et al., MLJ 2011)

Limitations



Maximization of the joint probability
• Traditional approaches for minimizing subset 0/1 loss:
• (Probabilistic) classifier chain

Y = {Sea, Desert, Building, Sky, Cloud, Mountain} 1. Creates a chain of L labels
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Recurrent Neural Networks for MLC
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(Nam et al., NIPS 2017)• Learning from a set of relevant labels in a sequential manner
• Number of relevant labels is much smaller than the total number of labels



Recurrent Neural Networks for MLC
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• Question: The effect of label permutation remain!
How to determine the target label permutation?



• Static label permutation for all instances
• Arbitrary label sequence randomly chosen at the beginning
• Label frequency distribution: freq2rare, rare2freq
• Label structures (e.g., pairwise label dependencies)

➜ Suboptimal choice; learn from only one permutation

• Different label permutations for individual instances
• Choosing randomly every time
• Learning from all possible label permutations

➜ More robust to the effect of label permutation; Computational complexity

We need MLC algorithms that learn context-dependent label permutations 
efficiently!

Target label permutations for RNN training
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Model based label permutation

2 1 S
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2 1 3 54 S

Bx 2x 1x 4x 3x 5x

label sequence sampling computing errors & 
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prediction
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Policy gradient

2 1 S
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2Generated label permutation: 1

Model prediction evaluation
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Experiments
• We combined two approaches! Context-dependent label permutation 

learning clearly outperforms static label permutation approaches
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Table 2. Comparison showing averages over several runs ± standard deviation and published ranking measure results in the XML
repository for SLEEC, FastXML and Parabel (same datasets and splits used).

Methods Example F1 Macro F1 Prec@1 Prec@3 Prec@5 nDCG@3 nDCG@5

M
e
d

ia
m

il
l

SLEEC - - 87.82 73.45 59.17 81.50 79.22
FastXML - - 84.22 67.33 53.04 75.41 72.37
Parabel - - 83.91 67.12 52.99 75.22 72.21
freq2rare 66.63±0.33 39.68±0.69 90.05±0.31 74.20±0.18 58.39±0.29 82.43±0.25 78.74±0.29

rare2freq 66.95±0.26 43.33±0.62 53.67±1.31 59.57±0.78 52.49±0.37 61.42±0.87 63.46±0.52

fixed-rnd 67.21±0.25 41.85±0.90 73.95±5.20 65.58±2.31 55.55±0.83 71.14±2.50 71.16±1.66

always-rnd 66.25±0.25 34.03±0.58 89.08±0.18 73.90±0.24 59.45±0.31 81.77±0.18 79.29±0.21

CLP-RNN (↵=0) 67.22±0.15 38.75±0.88 89.40±0.42 73.84±0.30 59.29±0.17 81.99±0.27 78.92±0.27

CLP-RNN (↵=0.6) 67.27±0.30 36.49±0.74 91.27±0.28 75.25±0.32 59.75±0.30 83.73±0.32 80.52±0.28

D
e
li

c
io

u
s

SLEEC - - 67.59 61.38 56.56 62.87 59.28
FastXML - - 69.61 64.12 59.27 65.47 61.90
Parabel - - 67.44 61.83 56.75 63.15 59.41
freq2rare 31.36±0.17 13.94±0.29 57.21±0.38 54.28±0.31 51.16±0.36 55.04±0.35 52.83±0.45

rare2freq 31.60±0.15 18.00±0.31 17.46±0.38 18.49±0.51 20.31±0.72 18.10±0.52 19.47±0.67

fixed-rnd 32.74±0.27 16.48±0.31 40.59±1.31 37.21±3.06 35.74±2.60 38.10±2.69 36.96±2.64

always-rnd 32.45±0.05 13.00±0.25 66.58±0.90 60.46±0.54 54.95±0.55 61.62±0.88 57.63±0.71

CLP-RNN (↵=0) 34.43±0.54 17.33±0.17 69.57±0.43 61.57±0.69 55.73±0.56 63.34±0.77 58.80±0.65

CLP-RNN (↵=0.9) 35.80±0.35 18.00±0.51 70.54±0.77 63.39±0.65 57.72±0.58 65.04±0.60 60.69±0.53

E
U

R
le

x

SLEEC - - 79.26 64.30 52.33 68.13 61.60
FastXML - - 71.36 59.90 50.39 62.87 58.06
Parabel - - 81.73 68.78 57.44 72.15 66.40

freq2rare 49.83±0.05 23.92±0.12 63.79±0.34 58.23±0.11 49.25±0.11 59.84±0.28 55.91±0.08

rare2freq 50.38±0.08 27.23±0.08 51.17±0.24 51.91±0.01 48.54±0.05 52.03±0.07 52.11±0.20

fixed-rnd 50.39±0.03 24.95±0.56 58.98±0.66 54.29±0.06 48.78±0.16 55.56±0.09 53.86±0.11

always-rnd 49.34±0.07 22.17±0.23 72.90±0.64 61.36±0.18 47.62±0.14 64.38±0.01 56.52±0.16

CLP-RNN (↵=0) 51.04±0.23 26.25±0.31 78.63±0.41 63.49±0.17 51.87±0.24 67.28±0.18 60.93±0.26

CLP-RNN (↵=0.2) 53.61±0.15 29.96±0.25 78.25±0.55 65.32±0.23 54.25±0.13 68.57±0.25 62.85±0.21

↵ and � for CLP-RNN, which is a hybrid model of policy
gradient, i.e., AC, and bootstarpping approach to construct a
target label ordering based on the current model parameters.
Although it is possible to pretrain CLP-RNN by setting ↵ to
0 for a certain number of epochs, we would like to focus the
effect of ↵ only in this work. We compared 16 pairs of trade-
off parameter ↵ 2 {0.1, 0.3, 0.6, 0.9} and discount factor
� = {0.1, 0.3, 0.9, 0.99} on the Delicious dataset with the
same setting as explained in Section 4, and results are shown
in Fig. 3. For the sake of clarity, we omitted 10 out of 16
configurations of ↵ and � because the differences between
them were negligible. Note that if ↵ is set to 0.0 and 1.0,
the methods are identical to MbLP and AC, respectively. As
can be seen in the figure, CLP-RNN is robust to the choice
of hyperparameters ↵ and � unless both hyperparameters
are close to 1. To be more specific, CLP-RNN converges
to relatively bad local minima when we set ↵ to 0.9 and
� is greater than 0.9. The reason of slow convergence to
poor parameter spaces of CLP-RNN can be attributed to the
stochastic learning process of AC and insufficient training
information on rare labels.

5.3. Overall Comparison

We emphasize that our proposed methods extend the
state-of-the-art approaches predicting label sequences us-
ing RNNs (Nam et al., 2017) whose goal is to generate bi-

partition predictions by maximizing subset accuracy. State-
of-the-art approaches for extremely large label spaces such
as SLEEC (Bhatia et al., 2015), FastXML (Prabhu & Varma,
2014) and Parabel (Prabhu et al., 2018), which focus on
ranking measures, can be adapted to bipartition measures by
using proper thresholding techniques, however, this is not
a trivial task. For example, Nam et al. (2017) reported that
label set predictions of FastXML obtained by probabilis-
tic thresholding underperformed the baselines used in our
comparison in term of bipartition measures, i.e., RNNs with
static label ordering strategies freq2rare and rare2freq.

Table 2 shows an overall comparison on the test sets. Note
that Prec@k and nDCG@k are equivalent for k = 1 and also
that example-based and micro-averaged F1 are similar to
each other, hence the latter ones, respectively, are skipped.
Furthermore, we show the results of the pure MbLP ap-
proach (↵ = 0) as well as the performance of the combined
version for which we tuned ↵ on the validation set.

We found that CLP-RNN consistently outperforms other
label permutation approaches regarding all measures except
macro F1 on Mediamill and Delicious. Especially our ver-
sion trading off MbLP and AC revealed a clear advantage
over all other compared orderings. CLP-RNN performed
particularly well on Delicious, where we have a relatively
large number of labels L and a high label cardinality C.
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