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Problem Statement

- Given a collection of items with unknown qualities wy, ..., w,,
we want to compute w = (wq,...,w,) up to scaling from
pairwise comparisons of items.

- In many contexts, comparisons are the right way to model the
available data:

- A patient compares how painful or helpful two treatments have
been.

- A customer purchases one of several items recommended by an
e-commerce site.

- A user clicks on one of the items suggested by a search engine.

- A user chooses one of several movies recommended by a
streaming site.
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The Simplest Possible Model: BTL over a graph

- Items are compared according to the Bradley-Terry-Luce (BTL)
model: probability that item i wins against item j is
Wi
Wi + W

- There are a number of models for item comparisons, and the
BTL model is arguably the simplest.

- We assume that there is an underlying “comparison graph” G
and if (i,j) is an edge in this graph, items i and j are compared R
times.

- We do not choose the comparison graph.

- Goal: understand how fast the error decays with k and G.
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- Each edge label represents the outcomes of noisy comparisons.

- Need to compute (scaled versions of) wq, wy, ws, w,, from these
measurements.
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- The dominant approach has been to construct a Markov chain
based on the data whose stationary distribution is an estimate
of the true weights.

- First proposed by [Dwork, Kumar, Naor, Sivakumar, WWW 2001]
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- Scaling with degrees recently improved by [Agarwal, Patil,
Agarwal, ICML 2018].
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- We give satisfactory answers to these concerns but only when k
is large.

- The standard way to measure the distance between subspaces
is through a sine of the angle:
| sin(W, w)| = inf ———12,

This same as measures considered above up to factors of b.

- First main result: we give a method such that when
k>Q <\E\ Log”(r],/’(i)), then with probability 1— 9,

i) = oS ost/)

sin?(W,w) = o<bR“"’*““Og(“"”))>.
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where Rpax, Rave are, respectively, the maximum and average
resistance of the comparison graph.



Our results - Il

- Second main result: when R > v/dpaxNRave,




Our results - Il

- Second main result: when R > v/dmaxNRavg,

E [sinz(\fv, w)} > Rf;evg.

- Punchline: the relevant graph-theoretic quantity is the graph
resistance.



Our results - Il

- Second main result: when R > v/dmaxNRavg,

E [sinz(\fv, w)} > Rf;evg.

- Punchline: the relevant graph-theoretic quantity is the graph
resistance.

- Worst-case for sin*(W, w) (or other notions of squared distance)
is actually O(n/R) when b = O(1).
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- We do the simplest possible thing.
- On edge (/,)) let Fj be the fraction of times i wins against j.
- Observe that

EF] _ wi/(wi+w) _ w

E[Fi]  wi/(wi +wj)  w

- Our approach: solve the linear system of equations
(P
log = =z — z,
g F], I JRI
in the least-square sense, and set W; = e?.
- Can be done in nearly linear time due to work by [Spielman,
Teng, 2004].
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- As a toy example, imagine that the comparison graph is a line.
- Our method learns something about the ratios
W1 /Wy, W /W3, ..., Wn_1/Wy,. The squared error in estimating each
of these will decay like 1/k.
- Relative errors multiply, e.g.
W3 Wp W3
Wi W wy
so if the two quantities on the right are known to some error,
those errors will multiply.
+ But (1+¢)" = 1+ ne when errors are small, the total squared
error will scale linearly with n.
- Now imagine an arbitrary graph. Now for any two nodes i and J,
we can think about the error over all paths from i to .
- Error for each path will scale with length but will decreases
when you get to average more paths.

- Clear parallel to resistance. 2
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- What sort of argument might yield a lower bound of resistance?

- There is a natural way resistance comes up:

Tr(L")
Ravg - Tv

where L is the graph Laplacian and LT is the Moore-Penrose
pseudonverse.

- One can prove a lower bound by exhibiting w;y # w, and
demonstrating that the expected (total variation) distance
between the two distributions on R|E| outcomes is small.
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- Choose
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eigenvalues, and Z; € {—1,1} is a Bernoulli random variable.

1



Why Resistance? The lower bound - Il

- Choose

where v; are the eigenvectors the Laplacian of the comparison
graph (normalized so that ||v||; = 1), with \; the corresponding
eigenvalues, and Z; € {—1,1} is a Bernoulli random variable.

- Suppose the error in estimating each Z; is C, i.e., for any Z;, the
error in estimating Z; satisfies

E {(z . Z)} > C
Then for any W,
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Why Resistance? The lower bound - Il

- Choose

where v; are the eigenvectors the Laplacian of the comparison
graph (normalized so that ||v||; = 1), with \; the corresponding
eigenvalues, and Z; € {—1,1} is a Bernoulli random variable.

- Suppose the error in estimating each Z; is C, i.e., for any Z;, the
error in estimating Z; satisfies

~ 2
E{(Z,-—Z,-) } > C
Then for any W,
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- Key lemma: C is constant.



The following figures show, respectively, evolution on the 2D grid
(left, where resistances grows as O(logn)) and 3D grid (right, where
resistance is constant).
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Conclusion and Future Work

- Our results prove that the squared error decay is O(Ravg/R) for k
large enough. Simulations show that this actually seems to be
true for all k.

- Conjecture: R,y is also the sample complexity of learning in the
Bradley-Terry-Luce model.

- Simulations show that our method performs similarly to Markov
chain methods, suggesting that resistance is the right scaling for
those methods as well.

- Getting the correct scaling is still open, as the upper and lower
bounds do not match in factors of b as well as in the gap
between maximum and average resistance.



