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Problem Statement

• Given a collection of items with unknown qualities w1, . . . ,wn,
we want to compute w = (w1, . . . ,wn) up to scaling from
pairwise comparisons of items.

• In many contexts, comparisons are the right way to model the
available data:

• A patient compares how painful or helpful two treatments have
been.

• A customer purchases one of several items recommended by an
e-commerce site.

• A user clicks on one of the items suggested by a search engine.
• A user chooses one of several movies recommended by a
streaming site.
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The Simplest Possible Model: BTL over a graph

• Items are compared according to the Bradley-Terry-Luce (BTL)
model: probability that item i wins against item j is

wi
wi + wj

• There are a number of models for item comparisons, and the
BTL model is arguably the simplest.

• We assume that there is an underlying “comparison graph” G
and if (i, j) is an edge in this graph, items i and j are compared k
times.

• We do not choose the comparison graph.

• Goal: understand how fast the error decays with k and G.
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Example

1

100

2

00
1

3

010

4
00
0

• Each edge label represents the outcomes of noisy comparisons.

• Need to compute (scaled versions of) w1,w2,w3,w4 from these
measurements.
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Previous Work – I

• The dominant approach has been to construct a Markov chain
based on the data whose stationary distribution is an estimate
of the true weights.

• First proposed by [Dwork, Kumar, Naor, Sivakumar, WWW 2001]
and first analyzed [Neghaban, Oh, Shah, NeurIPS 2012]. Under
the assumption

max
i,j

wi
wj

≤ b,

the estimate Ŵ satisfies∣∣∣∣∣∣ w
||w||1 − Ŵ

∣∣∣∣∣∣2
2∣∣∣∣∣∣ w

||w||1

∣∣∣∣∣∣2
2

≤ O
(
1
k

)
b5 logn

λ22

dmax
d2min

,

• Worst case scaling is O(n7/k).
• Scaling with degrees recently improved by [Agarwal, Patil,
Agarwal, ICML 2018].
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Previous Work and Motivation

• Computing the maximum likelihood estimator (which can be
done in polynomial time) was considered in [Shah,
Balakrishnan, Bradley, Parekh, Ramchandran, Wainwright, JMLR
16].

• The error bound was

Ob
(
1
m

)
n

λ2(L)
≥ E

[∣∣∣∣∣∣Ŵ− logw
∣∣∣∣∣∣2
2

]
≥ Ωb

(
1
m

)
max

n2, max
l=2,...,n

l∑
i=⌈0.99l⌉

1
λi(L)

 ,

after m samples, where L is the Laplacian of the comparison
graph, and Ob(·),Ωb(·) denotes that the constant within the O(·)
notation depends on b.

• Our concern I: we want matching upper and lower bounds.

• Our concern II: what is the relevant graph-theoretic quantity?
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Our results - I

• We give satisfactory answers to these concerns but only when k
is large.

• The standard way to measure the distance between subspaces
is through a sine of the angle:

| sin(Ŵ,w)| = inf
α

||αŴ− w||2
||w||2

.

This same as measures considered above up to factors of b.
• First main result: we give a method such that when
k ≥ Ω

(
|E| log2(n/δ)

)
, then with probability 1− δ,

sin2(Ŵ,w) = O
(
b2Rmax(1+ log(1/δ))

k

)
sin2(Ŵ,w) = O

(
b4Ravg(1+ log(1/δ))

k

)
,

where Rmax,Ravg are, respectively, the maximum and average
resistance of the comparison graph.
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sin2(Ŵ,w) = O
(
b2Rmax(1+ log(1/δ))

k

)
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Our results - II

• Second main result: when k ≥
√
dmaxnRavg,

E
[
sin2(Ŵ,w)

]
≥
Ravg
k .

• Punchline: the relevant graph-theoretic quantity is the graph
resistance.

• Worst-case for sin2(Ŵ,w) (or other notions of squared distance)
is actually O(n/k) when b = O(1).
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Our method

• We do the simplest possible thing.

• On edge (i, j) let Fij be the fraction of times i wins against j.

• Observe that
E[Fij]
E[Fji]

=
wi/(wi + wj)
wj/(wi + wj)

=
wi
wj

• Our approach: solve the linear system of equations

log
Fij
Fji

= zi − zj,

in the least-square sense, and set Ŵi = ezi .

• Can be done in nearly linear time due to work by [Spielman,
Teng, 2004].
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Why Resistance? The upper bound

• As a toy example, imagine that the comparison graph is a line.

• Our method learns something about the ratios
w1/w2,w2/w3, . . . ,wn−1/wn. The squared error in estimating each
of these will decay like 1/k.

• Relative errors multiply, e.g.
w3
w1

=
w2
w1
w3
w2

,

so if the two quantities on the right are known to some error,
those errors will multiply.

• But (1+ ϵ)n ≈ 1+ nϵ when errors are small, the total squared
error will scale linearly with n.

• Now imagine an arbitrary graph. Now for any two nodes i and j,
we can think about the error over all paths from i to j.

• Error for each path will scale with length but will decreases
when you get to average more paths.

• Clear parallel to resistance.
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Why Resistance? The lower bound

• What sort of argument might yield a lower bound of resistance?

• There is a natural way resistance comes up:

Ravg =
Tr(L†)
n ,

where L is the graph Laplacian and L† is the Moore-Penrose
pseudonverse.

• One can prove a lower bound by exhibiting w1 ̸= w2 and
demonstrating that the expected (total variation) distance
between the two distributions on k|E| outcomes is small.
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Why Resistance? The lower bound - II

• Choose

w =

 1
...
1

+
1√
k

n∑
i=2

Zi
vi√
λi
,

where vi are the eigenvectors the Laplacian of the comparison
graph (normalized so that ||v||2 = 1), with λi the corresponding
eigenvalues, and Zi ∈ {−1, 1} is a Bernoulli random variable.

• Suppose the error in estimating each Zi is C, i.e., for any Ẑi, the
error in estimating Zi satisfies

E
[(
Ẑi − Zi

)2]
≥ C

Then for any Ŵ,

E ||Ŵ− w||22
||w||22

≥
C(1/k)

∑n
i=2 1/λi

n = Ω

(
CTr(L†)

n

)
= Ω(CRavg)

• Key lemma: C is constant.
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eigenvalues, and Zi ∈ {−1, 1} is a Bernoulli random variable.

• Suppose the error in estimating each Zi is C, i.e., for any Ẑi, the
error in estimating Zi satisfies

E
[(
Ẑi − Zi

)2]
≥ C

Then for any Ŵ,

E ||Ŵ− w||22
||w||22

≥
C(1/k)

∑n
i=2 1/λi

n = Ω

(
CTr(L†)

n

)
= Ω(CRavg)

• Key lemma: C is constant.
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Simulations

The following figures show, respectively, evolution on the 2D grid
(left, where resistances grows as O(logn)) and 3D grid (right, where
resistance is constant).
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Conclusion and Future Work

• Our results prove that the squared error decay is O(Ravg/k) for k
large enough. Simulations show that this actually seems to be
true for all k.

• Conjecture: Ravg is also the sample complexity of learning in the
Bradley-Terry-Luce model.

• Simulations show that our method performs similarly to Markov
chain methods, suggesting that resistance is the right scaling for
those methods as well.

• Getting the correct scaling is still open, as the upper and lower
bounds do not match in factors of b as well as in the gap
between maximum and average resistance.
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