
Learning to select for a 
predefined ranking

Aleksei Ustimenko
Alexander Vorobev

Gleb Gusev 
Pavel Serdyukov



From ranking to sorting

• Search engines typically order the items by some relevance 
score obtained from a ranker before presenting the items to 
the user

• Yet, online shops and social networks allow the user to 
rearrange the items using some dedicated attribute (e.g. 
price or time)



From ranking 

To sorting



Threshold relevance?
• It was proven that filtering with a constant threshold for relevance is 

suboptimal (in terms of ranking quality metrics like DCG)

• The optimal algorithm was suggested by (Spirin et. at at SIGIR 2015), 
but it has quadratic complexity O (n2), where n – is the list size 

• Such algorithms are infeasible for search engines, we need to predict 
if to filter an item by just using item features (locally), not the entire 
list (globally)



LSO Problem Formulation

• We define a selection algorithm as 𝐹 and the result of its 
application to a list 𝐿 to be the selected 𝐿#

• 𝐿# - the same ordered list as 𝐿 , but with some items filtered

• We formulate the problem of LSO as learning from 𝐷 a selection 
algorithm 𝐹 that maximizes the expected ranking quality Q of 𝐿#, 
where 𝐿 is sampled from some 𝑃: 

F∗ = arg max 𝔼/~1𝑄(𝐿#)



Optimal Selection Predictor

• First, we suggest to build a model 𝑀 that predicts the binary decision 
of the infeasible optimal algorithm

• Then we train a binary classifier 𝑀 on the training examples obtained 
from that algorithm 𝑥78, 𝑂𝑝𝑡78 7: />∈@,8AB..D>

by minimizing logistic 
loss

• However, the logistic loss of such a classifier is still not directly related 
to ranking quality Q, i.e. it is not a listwise learning-to-rank algorithm



Direct Optimization of the Objective

• For a document 𝑑 with features vector 𝑥F ∈ ℝH we define 
probabilistic filtering rule by: 

𝑃(𝐹(𝑑) = 1) = 𝜎(𝑓(𝑥F)) =
1

1 + exp(−𝑓(𝑥F))
• Assume that decisions 𝐹(𝑑) for different 𝑑 are independent. Denote 

the space of all so-defined stochastic selection algorithms by ℱ.
• We transform 𝑄 to the 𝑄QRSSTU (𝐹, 𝐿) = 𝔼V∼1X 𝑄(𝐿V)
• And the problem to:

𝐹∗ = arg max #∈ℱ 𝔼/∼@𝑄QRSSTU(𝐹, 𝐿)



Policy Gradient Approach

• For	i.i.d.	samples	of	binary	decisions	𝑍B, … , 𝑍Q ∼ 𝑃# define	the	estimate	
(after	applying	the	log	derivative	trick):

𝜕𝑄QRSSTU(𝐹, 𝐿)
𝜕𝑓(𝑥8)

≈
1
𝑠
m
7AB,Q

(𝑄 𝐿V> − 𝑏) −𝑝8
V>o 1 − 𝑝8

BpV>o

where baseline 𝑏 ≔ 𝑄(𝐿rXs.t) with 𝑧#,vw.x = 1{𝑝v > 0.5}

• And we use this functional gradient directly in the Gradient Boosted Decision 
Trees learning algorithm (with implementation)



Pre-training

After training OSP model, we 
use it as a starting point for 
our approach

Thus, we avoid getting stuck 
in local maxima



Step by our poster #228


