Scaling Up Ordinal Embedding: A Landmark Approach
|ICML 2019

Jesse Anderton Javed Aslam
Northeastern University Northeastern University
jesse@ccs.neu.edu jaa@ccs.neu.edu
Spotify

janderton@spotify.com


mailto:jesse@ccs.neu.edu
mailto:janderton@spotify.com
mailto:jaa@ccs.neu.edu

Embedding with Features and Triplets: Metric/Kernel Learning

Suppose we want to perform image search by learning a pairwise distance between
pixel vectors, with smaller distances between images with more similar labels.
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Embedding with Features and Triplets: Metric/Kernel Learning

- We can define the pixel vector for image i as X;

- We can induce similarity triplets like (a, b, ¢) from labels to Indicate that image a
should be closer to image b than to image c

- We can then learn a metric ¢ defined on X which preserves this ordering

Given m-dimensional features for n objects X € R™™ and similarity triplets T C [n]°,
find metric ¢ : R" X R"™ - R s.t. (a,b,c) e T=> (X, X)) < Pp(X ,X)




Assumptions of Metric Learning

(a,b,c) € T= p(X,X,) < H(X,, X.)

- Implicitly assumes that T derives from an unknown metric space (Y, o).

JY € R4 ¢ -

RYx R - R s.t. (a,b,c) €T=>o(Y,,Y,) <o(Y,Y)

- Critically, assumes Y is a transformation of the observable features X, so we only need to
recover the metric.

- What if image labels |

icense, p
IN photo,

notographe
LY

nclude side information not observable from pixels, e.g. copyright
r, date/time, event being photographed, information about people

- No ¢ can approximate o well when Y contains a lot of information missing from X.



Embedding with Only Triplets: Ordinal Embedding

In Metric Learning, we fix the representation and learn a metric to satisfy
triplets.

In Ordinal Embedding, we fix the metric (Euclidean distance) and learn the
representation that satisfies triplets.

Given target dimension d and similarity triplets T c [n]°,
find positions X € R™4 s.t. (a,b,c) e T= || X, - X, || < [|IX, — X_|




Embedding with Only Triplets: Ordinal Embedding

Given target dimension d and similarity triplets T c [n]°,
find positions X € R™ s.t. (a,b,c) e T= ||X, - X, || < [|IX, — X_|

Uniqueness Theorem [Kleindessnher and von Luxburg, 2014; Arias-Castro
2015]: Under certain conditions, with enough points, any nxd matrix X which

satisfies T must recover the true latent representation Y up to similarity
transformations and bounded perturbation (¢ — 0 as n — ).



Metric Learning vs. Ordinal Emlbbedding

Metric Learning: Ordinal Embedding:

» Triplets used to constrain metric. - Triplets used to infer latent representation.

- Assumes features adequate to compute metric; - Recovers adequate features for Euclidean
poor performance otherwise. metric of fixed dimension, if possible.
Rich models to transform features; large literature - No explicit features to transform; relatively
on possible approaches. few optimization objectives.

-+ Generalizes easily to new instances. + Does not generalize without new triplets.

- Scales well to many objects in high dimension. + Prior methods do not scale past tens of

thousands of objects.



Scalability Problems

- Poor scalability has limited the usefulness Representative Result Sizes in the Literature
of Ordinal Embedding.

Algorithm N d

- M st hod n2).
any existing methods are ()(n?) GNM-MDS (JMLR 2007) Er 5
- All known O(|T]) objectives fail to find global
optima starting around » in the 10,000’s. Crowd Kernel (|C|\/|L 201 1) 300 2
+ For larger problems, embedding takes days t-STE (|\/| LSP 201 2) 1 ,OOO 2
or weeks and finds bad local minima.
SOE /LOE (ICML 2014) 5,000 2
-+ Goal: Embed large datasets accurately with
O(n) operations. ASAP LOE (MLSP 2015) 50,000 2




A Landmark Approach

|[dea: Accurately embed a small sulbset, providing fixed reference distances to use
to embed remaining points.

1. Phase one (L-SOE Phase, first m points)

- Goal Is to produce highly accurate small-to-medium scale ordinal
embedding.

2. Phase two (LLOE Phase, remaining n - m points)

- Goal is to embed remaining points in O(n) time, with accuracy depending on
accuracy of L-SOE phase.



A Landmark Approach

1. Phase one (L-SOE Phase, first m points):

Pick random m points from [n].

Pick L of m points as landmarks.

Sort m points by distance to each L point.
Sort L points by distance to each m point.
Embed resulting triplets with SOE.

Contribution: Show empirically that small-to-medium
scale ordinal embedding is solved with novel
combination of existing methods.

Given accurate positions for 1y, 19, 13, a, and c,
b (not in subset) will be tightly constrained.
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A Landmark Approach

2. Phase two (LLOE Phase, remaining n - m points, independently and in parallel):

Pick 2(d+1) subset points as landmarks by FFT JEEEE T
nsert b into landmark orderings of subset
—mbed b into shell intersection:

2(d+1)
P Ky Lrm)= Y max (o,(uxb—xliu —rl-)z—ml.2>
=1

Contribution: Novel, efficient approach for adding points {
to an existing ordinal embedding. ‘ o /

—ach landmark l,-‘has corresponding
shell radius r; and width m;



Phase two: LLOE embedding for point b

6(1193) < 5(119b) < 6(119C) 6(129C) < 5(129b) < 5(1293-) 5(13,&) < 5<139b) < 6(139C)



A Landmark Approach

2. Phase two (LLOE Phase, remaining n - m
points, independently and in parallel):

Pick 2(d+1) points as landmarks by FFT
Insert b into landmark orderings of subset
Embed b into shell intersection

Theorem [Embedding Quality]: Let X C Rd be n i.i.d.
draws from a Lipschitz-smooth measure over a
bounded, connected subspace of Rd. Let S C X be a
uniformly-sampled subset of size m » d with known
positions, and let A C S be a set of at least d+1 anchors
chosen by farthest-first traversal. For any x € X, let ¥’
€ Rd be any point satisfying the distance constraints to
the members of A imposed by the order of S U {x].
Then there is a constant ¢ € R such that for § € (0,1),
with probability at least 1-8,

d
= x| <—=1n=
m O
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Comparison to the Literature

Algorithm N

GNM-MDS (JMLR 2007) 55
Crowd Kernel (ICML 2011) 300
t-STE (MLSP 2012) 1,000

SOE / LOE (ICML 2014) 5,000
ASAP LOE (MLSP 2015) 50,000
Phase One (L-SOE) 8,000 30
Phase Two (LLOE) 1,000,000 30
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Thank You!

Implementation at; Flnd me at my poster
https //github. Com/Jesand/Hoe Pacmc Ballroom #227



https://github.com/jesand/lloe

