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Embedding with Features and Triplets: Metric/Kernel Learning

Suppose we want to perform image search by learning a pairwise distance between 
pixel vectors, with smaller distances between images with more similar labels.
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Embedding with Features and Triplets: Metric/Kernel Learning

• We can define the pixel vector for image i as Xi 

• We can induce similarity triplets like (a, b, c) from labels to indicate that image a 
should be closer to image b than to image c 

• We can then learn a metric 𝝓 defined on X which preserves this ordering

Given m-dimensional features for n objects X ∈ ℝn×m and similarity triplets T ⊂ [n]3,
 find metric ϕ : ℝm × ℝm → ℝ s.t. (a, b, c) ∈ T ⇒ ϕ(Xa, Xb) < ϕ(Xa, Xc)



Assumptions of Metric Learning

• Implicitly assumes that T derives from an unknown metric space (Y, 𝝈). 

• Critically, assumes Y is a transformation of the observable features X, so we only need to 
recover the metric. 

• What if image labels include side information not observable from pixels, e.g. copyright 
license, photographer, date/time, event being photographed, information about people 
in photo, …? 

• No 𝝓 can approximate 𝝈 well when Y contains a lot of information missing from X.

(a, b, c) ∈ T ⇒ ϕ(Xa, Xb) < ϕ(Xa, Xc)

∃Y ∈ ℝn×d, σ : ℝd × ℝd → ℝ s.t. (a, b, c) ∈ T ⇒ σ(Ya, Yb) < σ(Ya, Yc)



Embedding with Only Triplets: Ordinal Embedding

• In Metric Learning, we fix the representation and learn a metric to satisfy 
triplets. 

• In Ordinal Embedding, we fix the metric (Euclidean distance) and learn the 
representation that satisfies triplets.

Given target dimension d and similarity triplets T ⊂ [n]3,
 find positions X ∈ ℝn×d s.t. (a, b, c) ∈ T ⇒ ∥Xa − Xb∥ < ∥Xa − Xc∥



Embedding with Only Triplets: Ordinal Embedding

Uniqueness Theorem [Kleindessner and von Luxburg, 2014; Arias-Castro 
2015]: Under certain conditions, with enough points, any n⨉d matrix X which 
satisfies T must recover the true latent representation Y up to similarity 
transformations and bounded perturbation (𝜀 → 0 as n → ∞).

Given target dimension d and similarity triplets T ⊂ [n]3,
 find positions X ∈ ℝn×d s.t. (a, b, c) ∈ T ⇒ ∥Xa − Xb∥ < ∥Xa − Xc∥



Metric Learning vs. Ordinal Embedding

Metric Learning: 

• Triplets used to constrain metric.


• Assumes features adequate to compute metric; 
poor performance otherwise.


• Rich models to transform features; large literature 
on possible approaches.


• Generalizes easily to new instances.


• Scales well to many objects in high dimension.

Ordinal Embedding: 

• Triplets used to infer latent representation.


• Recovers adequate features for Euclidean 
metric of fixed dimension, if possible.


• No explicit features to transform; relatively 
few optimization objectives.


• Does not generalize without new triplets.


• Prior methods do not scale past tens of 
thousands of objects.



Scalability Problems

• Poor scalability has limited the usefulness 
of Ordinal Embedding.


• Many existing methods are Ω(n2).


• All known O(|T|) objectives fail to find global 
optima starting around n in the 10,000’s.


• For larger problems, embedding takes days 
or weeks and finds bad local minima.


• Goal: Embed large datasets accurately with 
O(n) operations.

Algorithm n d
GNM-MDS (JMLR 2007)
 55 2

Crowd Kernel (ICML 2011) 300 2

t-STE (MLSP 2012) 1,000 2

SOE / LOE (ICML 2014) 5,000 2

ASAP LOE (MLSP 2015) 50,000 2

Representative Result Sizes in the Literature



A Landmark Approach

Idea: Accurately embed a small subset, providing fixed reference distances to use 
to embed remaining points. 

1. Phase one (L-SOE Phase, first m points) 

• Goal is to produce highly accurate small-to-medium scale ordinal 
embedding. 

2. Phase two (LLOE Phase, remaining n – m points) 

• Goal is to embed remaining points in O(n) time, with accuracy depending on 
accuracy of L-SOE phase.
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A Landmark Approach

1. Phase one (L-SOE Phase, first m points): 
 
Pick random m points from [n]. 
Pick L of m points as landmarks. 
Sort m points by distance to each L point. 
Sort L points by distance to each m point. 
Embed resulting triplets with SOE.


Contribution: Show empirically that small-to-medium 
scale ordinal embedding is solved with novel 
combination of existing methods.
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Given accurate positions for l1, l2, l3, a, and c, 
b (not in subset) will be tightly constrained.



Phase One Performance in ℝ30 Times on 2013 MacBook Pro, 2 GHz Core i7.

Uniform Sample from Ball in ℝ30

GMM in ℝ30



A Landmark Approach

2. Phase two (LLOE Phase, remaining n – m points, independently and in parallel):  
 
Pick 2(d+1) subset points as landmarks by FFT  
Insert b into landmark orderings of subset 
Embed b into shell intersection:

l1
l2

l3
a

b
c

r1 m1

Each landmark li has corresponding 
shell radius ri and width mi

ℒ(Xb; l, r, m) =
2(d+1)

∑
i=1

max (0,(∥Xb − Xli∥ − ri)2 − m2
i )

Contribution: Novel, efficient approach for adding points 
to an existing ordinal embedding.



Phase two: LLOE embedding for point b
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𝜹(l1,a) < 𝜹(l1,b) < 𝜹(l1,c)
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𝜹(l2,c) < 𝜹(l2,b) < 𝜹(l2,a)
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𝜹(l3,a) < 𝜹(l3,b) < 𝜹(l3,c)



A Landmark Approach

Theorem [Embedding Quality]: Let X ⊂ ℝd be n i.i.d. 
draws from a Lipschitz-smooth measure over a 
bounded, connected subspace of ℝd. Let S ⊂ X be a 
uniformly-sampled subset of size m ≫ d with known 
positions, and let A ⊂ S be a set of at least d+1 anchors 
chosen by farthest-first traversal. For any x ∈ X, let x’ 
∈ ℝd be any point satisfying the distance constraints to 
the members of A imposed by the order of S ∪ {x}. 
Then there is a constant c ∈ ℝ such that for δ ∈ (0,1), 
with probability at least 1−δ,

∥x − x′�∥ ≤
cd
m

ln
m
δ

2. Phase two (LLOE Phase, remaining n – m 
points, independently and in parallel): 
 
Pick 2(d+1) points as landmarks by FFT 
Insert b into landmark orderings of subset 
Embed b into shell intersection



Phase Two Performance in ℝ30 Used L-SOE with m = 1,000, L = 100

Uniform Sample from Ball in ℝ30

GMM in ℝ30



Algorithm n d
GNM-MDS (JMLR 2007)
 55 2

Crowd Kernel (ICML 2011) 300 2
t-STE (MLSP 2012) 1,000 2

SOE / LOE (ICML 2014) 5,000 2
ASAP LOE (MLSP 2015) 50,000 2

Phase One (L-SOE) 8,000 30
Phase Two (LLOE) 1,000,000 30

Comparison to the Literature



Phase Two Performance in ℝ30 Used L-SOE with m = 1,000, L = 100

MNIST Digits in ℝ30

20 Newsgroups in ℝ30



Thank You!

Find me at my poster: 
Pacific Ballroom #227

Implementation at: 
https://github.com/jesand/lloe

https://github.com/jesand/lloe

