Scaling Up Ordinal Embedding: A Landmark Approach ICML 2019

Jesse Anderton
Northeastern University
jesse@ccs.neu.edu
Spotify
janderton@spotify.com

Javed Aslam Northeastern University jaa@ccs.neu.edu

Embedding with Features and Triplets: Metric/Kernel Learning

Suppose we want to perform image search by learning a pairwise distance between pixel vectors, with smaller distances between images with more similar labels.

Image a: architecture building

Image b: escalator architecture

Image c: flower plant

Photo by Dorien Beernink on Unsplash

Photo by zhang kaivv on Unsplash

Photo by Diana Bode on Unsplash

Embedding with Features and Triplets: Metric/Kernel Learning

- We can define the pixel vector for image i as X_i
- We can induce similarity triplets like (a, b, c) from labels to indicate that image a should be closer to image b than to image c
- We can then learn a metric ϕ defined on X which preserves this ordering

Given m-dimensional features for n objects $X \in \mathbb{R}^{n \times m}$ and similarity triplets $T \subset [n]^3$, find metric $\phi : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ s.t. $(a,b,c) \in T \Rightarrow \phi(X_a,X_b) < \phi(X_a,X_c)$

Assumptions of Metric Learning

$$(a,b,c) \in T \Rightarrow \phi(X_a,X_b) < \phi(X_a,X_c)$$

• Implicitly assumes that T derives from an unknown metric space (Y, σ) .

$$\exists Y \in \mathbb{R}^{n \times d}, \sigma : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \text{ s.t. } (a, b, c) \in T \Rightarrow \sigma(Y_a, Y_b) < \sigma(Y_a, Y_c)$$

- Critically, assumes Y is a transformation of the observable features X, so we only need to recover the metric.
 - What if image labels include side information not observable from pixels, e.g. copyright license, photographer, date/time, event being photographed, information about people in photo, ...?
 - No ϕ can approximate σ well when Y contains a lot of information missing from X.

Embedding with Only Triplets: Ordinal Embedding

- In Metric Learning, we fix the representation and learn a metric to satisfy triplets.
- In Ordinal Embedding, we fix the **metric** (Euclidean distance) and learn the **representation** that satisfies triplets.

Given target dimension d and similarity triplets $T \subset [n]^3$, find positions $X \in \mathbb{R}^{n \times d}$ s.t. $(a, b, c) \in T \Rightarrow ||X_a - X_b|| < ||X_a - X_c||$

Embedding with Only Triplets: Ordinal Embedding

Given target dimension d and similarity triplets $T \subset [n]^3$, find positions $X \in \mathbb{R}^{n \times d}$ s.t. $(a, b, c) \in T \Rightarrow ||X_a - X_b|| < ||X_a - X_c||$

Uniqueness Theorem [Kleindessner and von Luxburg, 2014; Arias-Castro 2015]: Under certain conditions, with enough points, any $n \times d$ matrix X which satisfies T must recover the true latent representation Y up to similarity transformations and bounded perturbation ($\varepsilon \to 0$ as $n \to \infty$).

Metric Learning vs. Ordinal Embedding

Metric Learning:

- Triplets used to constrain metric.
- Assumes features adequate to compute metric; poor performance otherwise.
- Rich models to transform features; large literature on possible approaches.
- Generalizes easily to new instances.
- Scales well to many objects in high dimension.

Ordinal Embedding:

- Triplets used to infer latent representation.
- Recovers adequate features for Euclidean metric of fixed dimension, if possible.
- No explicit features to transform; relatively few optimization objectives.
- Does not generalize without new triplets.
- Prior methods do not scale past tens of thousands of objects.

Scalability Problems

- Poor scalability has limited the usefulness of Ordinal Embedding.
- Many existing methods are $\Omega(n^2)$.
- All known O(|T|) objectives fail to find global optima starting around n in the 10,000's.
- For larger problems, embedding takes days or weeks and finds bad local minima.
- Goal: Embed large datasets accurately with O(n) operations.

Representative Result Sizes in the Literature

Algorithm	n	d
GNM-MDS (JMLR 2007)	55	2
Crowd Kernel (ICML 2011)	300	2
t-STE (MLSP 2012)	1,000	2
SOE / LOE (ICML 2014)	5,000	2
ASAP LOE (MLSP 2015)	50,000	2

Idea: Accurately embed a small subset, providing fixed reference distances to use to embed remaining points.

- 1. Phase one (L-SOE Phase, first *m* points)
 - Goal is to produce highly accurate small-to-medium scale ordinal embedding.
- 2. Phase two (LLOE Phase, remaining n m points)
 - Goal is to embed remaining points in O(n) time, with accuracy depending on accuracy of L-SOE phase.

1. **Phase one** (L-SOE Phase, first *m* points):

Pick random m points from [n].

Pick L of m points as landmarks.

Sort m points by distance to each L point.

Sort L points by distance to each m point.

Embed resulting triplets with SOE.

Contribution: Show empirically that small-to-medium scale ordinal embedding is solved with novel combination of existing methods.

Given accurate positions for l_1 , l_2 , l_3 , a, and c, b (not in subset) will be tightly constrained.

Uniform Sample from Ball in \mathbb{R}^{30}

Phase One Performance in \mathbb{R}^{30}

Times on 2013 MacBook Pro, 2 GHz Core i7.

2. **Phase two** (LLOE Phase, remaining n - m points, independently and in parallel):

Pick 2(*d*+1) subset points as landmarks by FFT Insert b into landmark orderings of subset Embed b into shell intersection:

$$\mathcal{L}(X_b; l, r, m) = \sum_{i=1}^{2(d+1)} \max\left(0, (\|X_b - X_{l_i}\| - r_i)^2 - m_i^2\right)$$

Contribution: Novel, efficient approach for adding points to an existing ordinal embedding.

Each landmark l_i has corresponding shell radius r_i and width m_i

Phase two: LLOE embedding for point b

2. **Phase two** (LLOE Phase, remaining n - m points, independently and in parallel):

Pick 2(*d*+1) points as landmarks by FFT Insert b into landmark orderings of subset Embed b into shell intersection

Theorem [Embedding Quality]: Let $X \subset \mathbb{R}^d$ be n i.i.d. draws from a Lipschitz-smooth measure over a bounded, connected subspace of \mathbb{R}^d . Let $S \subset X$ be a uniformly-sampled subset of size $m \gg d$ with known positions, and let $A \subset S$ be a set of at least d+1 anchors chosen by farthest-first traversal. For any $x \in X$, let $x' \in \mathbb{R}^d$ be any point satisfying the distance constraints to the members of A imposed by the order of $S \cup \{x\}$. Then there is a constant $c \in \mathbb{R}$ such that for $\delta \in (0,1)$, with probability at least $1-\delta$,

$$||x - x'|| \le \frac{cd}{m} \ln \frac{m}{\delta}$$

Uniform Sample from Ball in \mathbb{R}^{30}

Phase Two Performance in R³⁰

Used L-SOE with m = 1,000, L = 100

Comparison to the Literature

Algorithm	n	d
GNM-MDS (JMLR 2007)	55	2
Crowd Kernel (ICML 2011)	300	2
t-STE (MLSP 2012)	1,000	2
SOE / LOE (ICML 2014)	5,000	2
ASAP LOE (MLSP 2015)	50,000	2
Phase One (L-SOE)	8,000	30
Phase Two (LLOE)	1,000,000	30

MNIST Digits in \mathbb{R}^{30}

20 Newsgroups in \mathbb{R}^{30}

Phase Two Performance in \mathbb{R}^{30}

Used L-SOE with m = 1,000, L = 100

Thank You!

Implementation at:

https://github.com/jesand/lloe

Find me at my poster:

Pacific Ballroom #227