Coreset for Ordered Weighted Clustering

Vladimir Braverman¹, Shaofeng H.-C. Jiang², Robert Krauthgamer², Xuan Wu¹

¹CS Department, Johns Hopkins University ²Weizmann Institute of Science *All authors contribute equally to this work.

Key Word: Data-Reduction, OWA Framework, Ordered k-median, Simultaneous Core-set

The Ordered *k*-Median Clustering

Let $X \subset \mathbb{R}^d$ be your data set.

k-center,*k*-median, and *p*-centrum

- k-center: $\min_{C \subset \mathbb{R}^d: |C| = k} \max_{x \in X} d(x, C)$.
- k-median: $\min_{C \subset \mathbb{R}^d: |C| = k} \sum_{x \in X} d(x, C)$.
- k-facility p-centrum: cost function is defined by the largest p connection cost.
- 1-centrum= k-center
- n-centrum= k-median.

k-center: $\{B\}$, k-median: $\{B, C, D, E, F\}$, 3-centrum: $\{B, C, D\}$.

The Ordered k-median Clustering

- Given a non-increasing weight vector $v \in \mathbb{R}^n_+$. Sort the data points by, $d(x_1, C) \ge ... \ge d(x_n, C)$
- $\min_{C \subset \mathbb{R}^d} \operatorname{cost}_{\nu}(X, C)$ where $\operatorname{cost}_{\nu}(X, C) := \sum_{i=1}^n v_i d(x_i, C)$.
- p-centrum Problem: v = (1, ..., 1, 0, ..., 0).

Coreset and Simultaneous Coreset

Coreset

A weighted set D (with weight w) is called an (strong) ε -coreset of X for k-clustering problem (for a specific objective cost) if $\forall C \subset \mathbb{R}^d, |C| = k, \cos t(D, C) \in (1 \pm \varepsilon) \cos t(X, C)$.

Simultaneous Coreset

- Ordered k-median has multiple objectives, namely, cost_v for different v.
- Want to approximate them all.
- $cost_{\nu}(D, C) \in (1 \pm \varepsilon) cost_{\nu}(X, C)$ for every C and ν .

Results

Upper Bounds

- Thm 1: We can construct Coreset for *p*-Centrum (for specific *p*) of size $O(\frac{k^2}{c^d+1})$ efficiently.
- Thm 2: We can construct simultaneous Coreset for ordered k-median of size $O(\frac{k^2 \log^2 n}{\varepsilon^d})$ efficiently. This is the first simultaneous coreset for ordered weighted clustering.

Nearly Matching Lower Bound

- Thm 3:There is a constant c, s.t., c-Simultaneous coreset for ordered k-median problem has a size lower bound Ω(log n).
- Previously Known Fact: $\Omega(\frac{1}{\varepsilon^d})$ is a lower bound of coreset size even for k-center problem.

Applications

- One coreset, multiple objectives.
- Can adjust the objective and optimize w.r.t it easily, via our coreset.

Thank you!

Future Work

- Closing the size bound gap for simultaneous coreset.
- Deriving lower bound when the objective is a specific v (depend on v).
- Study other objectives where similar coreset construction is useful.

Appendix

The Basic Case: p-Centrum Problem for k = d = 1

- Compute the optimal center c.
- Let $L \cup R$ be points contributed to $cost_p(X, c)$, where L is left to c and R is right to c.
- Let $Q = X \setminus (L \cup R)$ denote the remaining points.
- Observation: $\max_{q \in Q} d(q, c) \leq \frac{1}{p} \operatorname{cost}_p(X, c)$.
- Partition L and R into buckets of small cumulative error O(εopt) (k-Median Part)
- Partition Q into buckets of small length $O(\varepsilon \text{opt}/p)$.
- Pick D to be the mean of each bucket.

Moving to Simultaneous Coreset and High Dimension

Observation

- Although there are infinitely many possible weight, we only need to be simultaneous coreset for $O(\frac{\log n}{\varepsilon})$ many p-centrum problems in order to obtain simultaneous coreset.
- Buckets can be merged!

Dealing with high dimensional data

- Borrow Sariel's idea for k-median.
- Project into an ε -fan net (lines) shot from the approximate centers then apply the one dimensional construction.
- Need to take union of the approximate centers for all p_i-centrum problem.