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Our Goal: Extend Spectral Clustering to Graphs With Both
Positive and Negative Edges

o Positive Edges: encode friendship, similarity, proximity, trust

o Negative Edges: encode enmity, dissimilarity, conflict, distrust

A signed graph is the pair GT = (G*, G™) where
GT = (V, W™) encodes positive relations, and

G~ = (V, W) encodes negative relations
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Clustering of Signed Graphs

Given: an undirected signed graph G* = (G*,G™)
Goal : partition the graph such that
@ edges within the same group have positive weights
o edges between different groups have negative weights

Gt G~ W+ W=

Our Goal: define an operator that blends the information of
(G*,G™) such that the smallest eigenvectors are informative.
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Our Goal: define an operator that blends the information of
(G*,G™) such that the smallest eigenvectors are informative.

State of the art approaches:

Lsr=L"+Q" (Kunegis, 2010)
Ler = L + W~ (Chiang, 2012)

H=(a—1)I—a(W"—W~")+D" + D" (Saade, 2015)

Current methods are arithmetic means of Laplacians
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The power mean of non-negative scalars a, b, and p € R:

o) = <apﬁ2LbP>1/p

Particular cases of the scalar power mean are:
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We introduce the Signed Power Mean Laplacian as an
alternative to blend the information of the signed graph G*:
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Analysis in the Stochastic Block Model

Theorem (loosely stated): The Signed Power Mean Laplacian L,
with p < 0 is better than arithmetic mean approaches in

expectation.
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Analysis in the Stochastic Block Model

Theorem (loosely stated): The Signed Power Mean Laplacian L,
with p < 0 is better than arithmetic mean approaches in
expectation.
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Theorem (loosely stated): with high probability eigenvalues and
eigenvectors of L, concentrate around those of the expected Signed
Power Mean Laplacian £,




