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Unsupervised Feature Selection (UFS) is Widely Used in Machine Learning

e Identify the subset of most informative features in dataset
e Simplifies the process of training models
e Especially useful if the data is difficult or expensive to collect
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Unsupervised Feature Selection (UFS) is Used Widely in Applied ML

e Example: the L1000 Landmark Genes [Lamb et al., 2006]
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UFS Methods Typically Rely on Regularization

Unsupervised Discriminative Feature Selection (UDFS)
[Yang et al., 2011]

Multi-Cluster Feature Selection (MCFS) All based on
[Cai et al., 2010] L orL,

regularization
Autoencoder Feature Selection (AEFS)

[Han et al., 2017]
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What about directly backpropagating through discrete “feature selection”
nodes?

Concrete selector layer Decoder layers
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What about directly backpropagating through discrete “feature selection”
nodes?

Concrete selector lﬂ:’o er Decoder layers
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Replace the weights
of the encoder with
parameters of a
Concrete Random
Variable (Maddison,
2016)
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Results on the ISOLET dataset (reconstruction error)
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Results on the ISOLET dataset (classification accuracy)
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Concrete Autoencoder (CAE) Genes Outperform the L1000 Landmark Genes!
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Concrete Autoencoder Takeaways

e More effective than other feature selection methods based on
regularization

e Implementation is just a few lines of code from a standard
autoencoder

e Training time is similar to standard autoencoder per epoch

e (Can be extended to supervised/semi-supervised settings
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Start using concrete autoencoders today!

Installation: pip install concrete-autoencoder

Code: https://github.com/mfbalin/Concrete-Autoencoders

For more details and results:
Poster: Thu Jun 13th 06:30 - 09:00 PM @ Pacific Ballroom #188

Contact: al2d@stanford.edu, fatih.balin@boun.edu.tr
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