Equivariant Transformer Networks

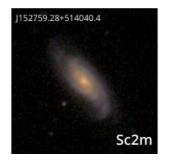
(Poster 18)

Kai Sheng Tai, Peter Bailis & Gregory Valiant Stanford University

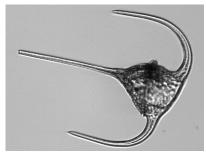
github.com/stanford-futuredata/equivariant-transformers

Goal: Transformation-invariant models

- How can we learn models that are invariant to certain input transformations?
- Relevant to many application domains:



astronomical objects

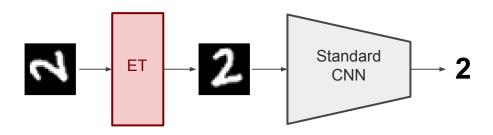


plankton micrographs

traffic signs

- In this work, we explore alternatives to data augmentation
- How can we build invariances directly into network architectures? [Group Equivariant CNNs (Cohen+'16, Dieleman+'16), Harmonic Networks (Worrall+'17), etc.]
- Can we achieve invariance while reusing off-the-shelf architectures?
 [Spatial Transformer Networks (Jaderberg+'15)]

Equivariant Transformer Layers



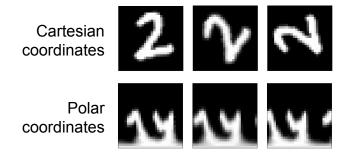
- An Equivariant Transformer (ET) is a differentiable image-to-image mapping
- Key property ("local invariance"):
 - **all** transformed versions of a base image are mapped to the **same** output image
- Requirement:
 - family of transformations forms a Lie group:
 transformations are invertible, differentiable wrt a real-valued parameter
 - includes many common families of transformations: translation, rotation, scaling, shear, perspective, etc.

Key ideas

- 1. Standard convolutional layers are **translation-equivariant**
 - i.e., input translated by $\theta \rightarrow$ output translated by θ

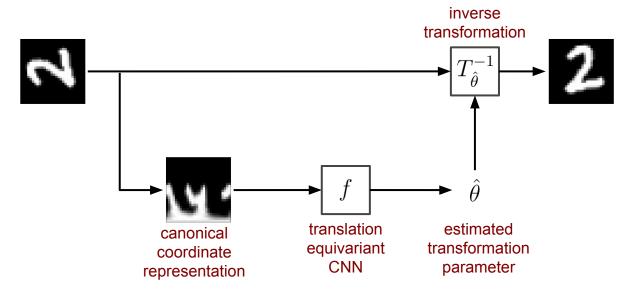
Key ideas

- 1. Standard convolutional layers are **translation-equivariant**
 - i.e., input translated by $\theta \rightarrow$ output translated by θ
- 2. Specialized coordinates turn smooth transformations into **translation**
 - Example (rotation): in polar coordinates, rotation appears as translation by angle θ



- This can be generalized to other smooth transformations using canonical coordinate systems for Lie groups (Rubinstein+'91)

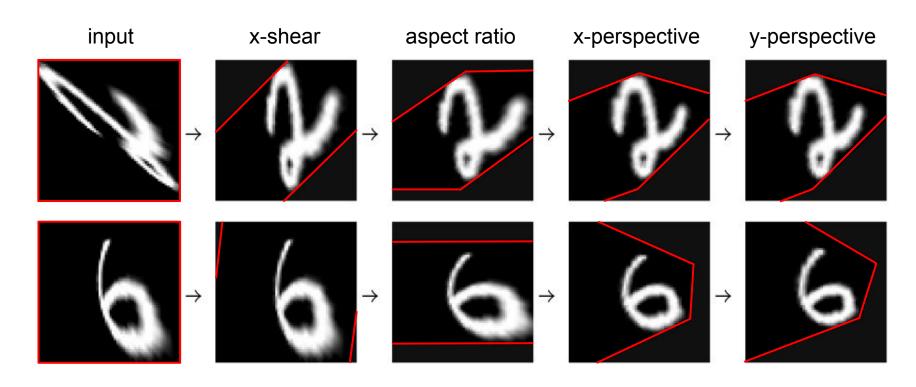
ETs are locally invariant by construction



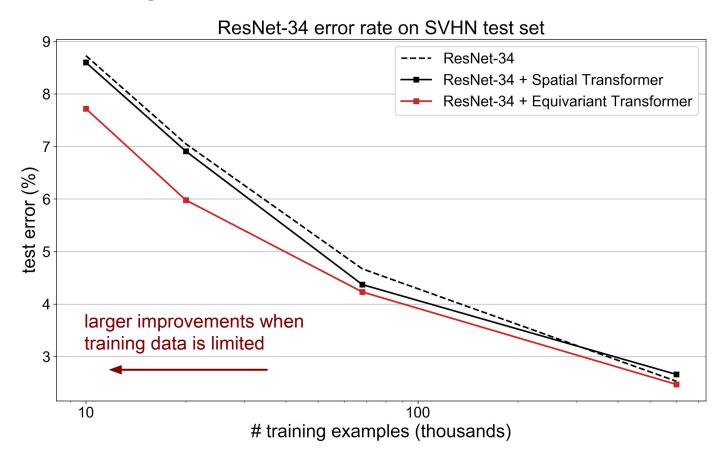
- Equivariance **guarantees** that an additional transformation of θ causes the estimated parameter to be increased by θ
- The output is therefore invariant to transformations of the input
- We implement transformation with differentiable grid resampling (Jaderberg+'15)

Compositions of ETs handle more complicated transformations

Since ETs map images to images, they can be composed sequentially



ETs improve generalization



Takeaways

 Equivariant Transformers build transformation invariance into neural network architectures

Main ideas:

- Canonical coordinates let us tailor ET layers to specific transformation groups
- Image-to-image interface lets us compose ETs to handle more complicated transformation groups

Poster #18 kst@cs.stanford.edu

Try it yourself!

github.com/stanford-futuredata/equivariant-transformers