

FO Sorting Out Lipschitz Function Approximation

Cem Anil*

James Lucas*

Roger Grosse

Pacific Ballroom
Poster #15
(6:30 – 9:00 PM)

VECTOR

Why Care?

- Provable Adversarial Robustness (Cisse et. al., 2018)
- Wasserstein Distance Estimation (Arjovsky et. al., 2017)
- •Training Generative Models (Arjovsky et. al., 2017) (Behrmann et. al., 2019)
- •Computing Generalization Bounds (Bartlett et. al., 1998,2017)
- •Stabilizing Neural Net Training(Xiao et. al., 2018) (Odena et. al., 2018)

•

Design an architecture that is:

Constrained Enough

Never violates a prescribed K-Lipschitz constraint

Expressive Enough

Approximate any K-Lipschitz Function (universality).

Universal Lipschitz Function Approximation

Design an architecture that is:

Constrained Enough

Never violates a prescribed K-Lipschitz constraint

Expressive Enough

Approximate any K-Lipschitz Function (universality).

Universal Lipschitz Function Approximation

Main Contributions

Propose an expressive Lipschitz constrained architecture that

- Overcomes a previously unidentified limitation in prior art.
- Can recover Universal Lipschitz function approximation.

Design an architecture that is:

Constrained Enough

Never violates a prescribed K-Lipschitz constraint

Expressive Enough

Approximate any K-Lipschitz Function (universality).

Universal Lipschitz Function Approximation

Main Contributions

Propose an expressive Lipschitz constrained architecture that

- Overcomes a previously unidentified limitation in prior art.
- Can recover Universal Lipschitz function approximation.

Apply this architecture to

- Train classifiers provably robust to adversarial perturbations.
- Obtain tight estimates of Wasserstein distance.

Compose Lipschitz linear layers and Lipschitz activations.

Compose Lipschitz linear layers and Lipschitz activations.

What went wrong?

Activation: GroupSort

- Activation: GroupSort
 - Nonlinear, continuous and differentiable almost everywhere.
 - Gradient Norm Preserving

- Activation: GroupSort
 - Nonlinear, continuous and differentiable almost everywhere.
 - Gradient Norm Preserving

Linear Transformation:

Described in the paper.

Universal Lipschitz Function Approximation

 Norm constrained GroupSort architectures can recover Universal Lipschitz Function Approximation!

Subtleties and details in the paper/poster

Wasserstein Distance Estimation

- Much tighter estimates of Wasserstein distance
- Training Wasserstein GANs (Arjovsky et. al. 2017)

	Linear	MNIST	CIFAR10
ReLU	Spectral	0.95 ± 0.01	1.12 ± 0.02
Maxout	Spectral	1.20 ± 0.03	1.40 ± 0.01
MaxMin	Spectral	1.36 ± 0.07	1.62 ± 0.04
GroupSort(4)	Spectral	1.64 ± 0.02	1.63 ± 0.03
GroupSort(9)	Spectral	1.70 ± 0.02	1.41 ± 0.04
ReLU	Björck	1.40 ± 0.01	1.39 ± 0.01
Maxout	Björck	1.95 ± 0.01	1.76 ± 0.02
MaxMin	Björck	2.16 ± 0.01	2.08 ± 0.02
GroupSort(4)	Björck	$\boldsymbol{2.31 \pm 0.01}$	2.17 ± 0.02
GroupSort(9)	Björck	2.31 ± 0.01	$\boldsymbol{2.23 \pm 0.02}$

Provable Adversarial Robustness

 L-inf constrained GroupSort networks + multi-class hinge loss gets us provable adversarial robustness with little hit to accuracy.

Main Contributions

Propose an Lipschitz GroupSort Networks that

- Buy us expressivity via. Gradient norm preservation.
- Can recover Universal Lipschitz function approximation.

Apply GroupSort Networks to

- Train classifiers provably robust to adversarial perturbations.
- Obtain tight estimates of Wasserstein distance.

FO Sorting Out Lipschitz Function Approximation

Cem Anil*

James Lucas*

Roger Grosse

Pacific Ballroom
Poster #15
(6:30 – 9:00 PM)

VECTOR