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Goal

Train neural networks subject to a strict Lipschitz constraint while
maintaining expressive power.
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Why Care?

*Provable Adversarial Robustness (cisse et. al, 2018)
*\Wasserstein Distance Estimationarousky et. al, 2017)
*Training Generative Models (arjovsky et. al., 2017) (Behrmann et. al., 2019)
Computing Generalization Bounds (sartiett et. al., 1998,2017)
*Stabilizing Neural Net Trainingxiao et. at, 2018) (0dena et. al., 2018)



Lipschitz via. Architectural Constraints

Design an architecture that is:

Constrained Enough

Expressive Enough

Never violates a prescribed K-Lipschitz constraint Approximate any K-Lipschitz Function (universality).

Universal Lipschitz Function Approximation




Lipschitz via. Architectural Constraints

Design an architecture that is:

Constrained Enough

Expressive Enough

Never violates a prescribed K-Lipschitz constraint Approximate any K-Lipschitz Function (universality).

Universal Lipschitz Function Approximation

Main Contributions

Propose an expressive Lipschitz constrained architecture that
e Overcomes a previously unidentified limitation in prior art.
 Canrecover Universal Lipschitz function approximation.




Lipschitz via. Architectural Constraints

Design an architecture that is:

Constrained Enough Expressive Enough
Never violates a prescribed K-Lipschitz constraint Approximate any K-Lipschitz Function (universality).

Universal Lipschitz Function Approximation

Main Contributions
Propose an expressive Lipschitz constrained architecture that
e Overcomes a previously unidentified limitation in prior art.
 Canrecover Universal Lipschitz function approximation.

Apply this architecture to
* Train classifiers provably robust to adversarial perturbations.

* Obtain tight estimates of Wasserstein distance.




Lipschitz via. Architectural Constraints

e Compose Lipschitz linear layers and Lipschitz activations.
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Lipschitz via. Architectural Constraints

e Compose Lipschitz linear layers and Lipschitz activations.

Lipschitz
Lipschitz

Activation
Lipschitz
Lipschitz

Lipschitz
Activation

N
ot

| -
S ®
n D
o C
P

C
2
o

©
=
o+

(@)
<

l
|
1-Lipschitz Network



Lipschitz via. Architectural Constraints

First thing to try: approximate absolute value function.
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Lipschitz via. Architectural Constraints

First thing to try: approximate absolute value function.
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Lipschitz via. Architectural Constraints

What went wrong?
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Lipschitz via. Architectural Constraints

* Diagnosing the issue: Inspect gradient norms!
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Lipschitz via. Architectural Constraints

* Diagnosing the issue: Inspect gradient norms!
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Problem:

Architecture is losing
gradient norm!
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Solution: Gradient Norm Preservation

* Activation: GroupSort
* Nonlinear, continuous and differentiable almost
everywhere.
 Gradient Norm Preserving

-l B B =
N N N S

sort sort

 Linear Transformation: |Described in the paper.
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Universal Lipschitz Function Approximation

* Norm constrained GroupSort architectures can recover
Universal Lipschitz Function Approximation!

Subtleties and details in the paper/poster




Wasserstein Distance Estimation

* Much tighter estimates of Wasserstein distance
* Training Wasserstein GANS (arjovsky et. al. 2017)
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Provable Adversarial Robustness

* L-inf constrained GroupSort networks + multi-class hinge loss
gets us provable adversarial robustness with little hit to accuracy.

Theoretical Robustness Lower-Bounds of Lipschitz Networks
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Main Contributions

Propose an Lipschitz GroupSort Networks that
* Buy us expressivity via. Gradient norm preservation.
 Canrecover Universal Lipschitz function approximation.

Apply GroupSort Networks to
* Train classifiers provably robust to adversarial perturbations.
* Obtain tight estimates of Wasserstein distance.
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