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Approximated Oracle Filter Pruning for Destructive CNN Width Optimization

*Filter pruning aims to remove some filters in CNNSs to reduce the parameters, FLOPSs,
memory footprint, power consumption, etc.

*The problems:
« Given a well-trained model, it is difficult to recognize and remove the redundant filters.

« Given a CNN architecture, it is tricky to decide the number of filters (i.e., the width) at
each conv layer.

*Our method can:
shrink a wide well-trained redundant CNN into a narrower compact one (filter pruning)
«optimize the width of each conv layer in a specific architecture (CNN Re-design)



*AOFP is a multi-path
training-time filter pruning
framework, where we keep
searching for the next filters to
prune in a binary search
manner and finetuning the
model in the meantime, which
features high quality of
Importance estimation,
reasonable time complexity and
no need for heuristic knowledge

*We ablate the filters randomly;,
then compute and accumulate
the change in the next layer's
outputs

*Binary Filter Search enables
to automatically decide the
optimal pruning granularity
and eventual width of conv
layers.
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by the filter ablation attempts \
Figure 1. Overview of AOFP, where convl and conv2 in a We accumulate the collected t values to discover
CNN are being pruned simultaneously for example. Filters one half of the filters which are the less important.
FOL pt2) peh R4 pave already been masked out, and We use a threshold to decide if the current half
the algorithm is trying to pick the next unimportant one out of are good (unimportant) enough. If not, we
{F(LS) F(1*4)} and two out of {F(Q’Q) F(23) p25) p(2.6) 1 continue to find the less important half from them
’ ’ ’ ’ (i.e., 1/4 of the original search space).
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*Pruning an existing model:

* As AOFP proceeds on ResNet-152, we show the remaining percentage of filters at the
first layers in the four stages as the representatives (left, which originally have 64, 128,
256 and 512 filters), and remaining width of all the target layers (right) every 20,000
batches. As can be observed, AOFP automatically figures out that the first layer in
stage2 can be pruned significantly, and chooses to prune it with large granularity (8
filters every time) at the beginning, then gradually reduces the granularity.
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*CNN Re-design:

* \We train a scaled ResNet-50 where the 1st and 2nd layers in each residual block have
1.25X of the original width, then use AOFP to reduce its FLOPs to the same level as
the original ResNet-50. In this way, we obtain a network where some layers are
wider than the original ResNet-50 and some are narrower. We train a model with
the discovered structure from scratch, and the accuracy is still higher than the baseline.
It is observed that the irregularly shaped structure runs as fast as the tidy baseline

(measured in examples/sec). soo{ = o o00 [+ s
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Top-1 FLOPs CPU GPU

Resso base 75'34 385G 14'4 437 1 2 3 45 6 7 8 9 10111213 ° 1 10 20 30
Scaled 1.25x% 76.60 528G 11.2 353 layer index layer index
Re-design-pruned 7647 383G 142 430 (a) VGG on CIFARI10. (b) ResNet-50 on ImageNet.
Re-design-scratch  76.30  3.83G - - Figure 7. Layer width of the re-designed models in comparison

with the original. Note again that only the internal layers of ResNet-
50 (i.e., the first two layers in each residual block) are shown.
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* Thank you for your attention!

* Welcome to our poster:

* Wed Jun 12th 06:30 -- 09:00 PM
* Room: Pacific Ballroom



