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Cheap Orthogonal Constraints in Neural Networks

Optimization with orthogonal constraints

We study the optimization of neural networks with orthogonal constraints

B ∈ Rn×n, BᵀB = I

Motivation:
I Orthogonal matrices have eigenvalues with norm 1.

I Convenient for exploding and vanishing gradient problems within
RNNs.

I They constitute a implicit regularization method.

I They are the basic building block for matrix factorizations like SVD or
QR.

I They allow for the implementation of factorized linear layers.
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Cheap Orthogonal Constraints in Neural Networks

Optimization with orthogonal constraints

min
B∈SO(n)

f(B)

︸ ︷︷ ︸
constrained problem.

is equivalent to solving min
A∈Skew(n)

f(exp (A))

︸ ︷︷ ︸
unconstrained problem.

I The matrix exponential maps skew-symmetric matrices to
orthogonal matrices.

I Compute the exponential to optimize over the unconstrained space of
skew symmetric matrices.

I No orthogonality needs to be enforced.
I It has negligible overhead in your neural network.

I General purpose optimizers can be used (SGD, ADAM, ADAGRAD, . . . ).

I No new extremal points are created in the main parametrization region.
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Cross entropy in the copying problem for L = 2000.

The copying problem uses synthetic data of the form:

Random numbers Wait for L steps Recall
Input: 14221 ------ :----
Output: ----- ------ 14221
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MODEL N # PARAM VALID. TEST

EXPRNN 224 ≈ 83K 5.34 5.30
EXPRNN 322 ≈ 135K 4.42 4.38
EXPRNN 425 ≈ 200K 5.52 5.48

SCORNN 224 ≈ 83K 9.26 8.50
SCORNN 322 ≈ 135K 8.48 7.82
SCORNN 425 ≈ 200K 7.97 7.36

LSTM 84 ≈ 83K 15.42 14.30
LSTM 120 ≈ 135K 13.93 12.95
LSTM 158 ≈ 200K 13.66 12.62

EURNN 158 ≈ 83K 15.57 18.51
EURNN 256 ≈ 135K 15.90 15.31
EURNN 378 ≈ 200K 16.00 15.15

RGD 128 ≈ 83K 15.07 14.58
RGD 192 ≈ 135K 15.10 14.50
RGD 256 ≈ 200K 14.96 14.69

RNNs trained on a speech prediction task on the TIMIT dataset.
It shows the best validation MSE accuracy.
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