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What is Dynamic Normalization (DN)?

DN adapts to various networks, tasks, and batch sizes.

DN can be easily implemented and trained in a Differentiable end-to-end manner

with merely small number of parameters, by replacing the original normalizers.

DN has matrix formulation, representing a wide range of normalization methods
(e.g. GroupNorm with any numbers of groups), shedding light on analyzing them

theoretically.
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Dynamic Normalization (DN)

* Example: ResNet34 trained with DNs on ImageNet
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A General Form vs. Switchable Normalization (SN)

A General Normalization Form Switchable Normalization: Discrete Learning-to-Normalize
« Remove means and reduce by variance * Learn a linear combination of Batch Norm, Instance Norm,
normalized feature map Layer Norm and Group Norm  jmportance ratio, sum to 1

feature map - mean \

\ P h — ,uk < P h — Zke{BN,]N,LN,GN,...} N

V(0F)2 +e \/Zke{BN,]N,IN,GN,...} AF(oF)? 4 €

standard deviation

* Problem: enumerate a large pool of candidate normalizers
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Dynamic Normalization (DN): Continuous Learning-to-Normalize
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D ic N lizati ii h — uuv n ,B
ynamic Normalization: =
Y TUov

« U e RVN ¥ e R*C: two binary diagonal-block matrices

ANV

(d) Group Norm (GN)

* U,0 € RY*C: means and stds of Instance Normalization (IN), implying that we learn to

combine statistics of IN
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Dynamic Normalization (DN): Continuous Learning-to-Normalize

U=1V =1 u=1V=1 U=LV =1 U = I,V is block-diagonal
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Experimental Results

* ResNetl8 on CIFAR10

(1.128) (3.8) (3.4) (4.8) (82) 2.8)
BN 94.30 93.31 93.01 94.18 91.55 94.34
GN3o | 93.677 90227 9058  92.667  90.85  93.65T

GN1g 93.17 8949  90.90f 9232  90.897 93.21
GNxg 93.33 89.52 90.00 91.92 90.06 92.93

SN 94.40 93.33 93.10 9387 9238 9426
DN 94.98 93.81 9345 9467 9245  94.95
* ImageNet

BN GN LN IN SN BRN  BKN DN
ResNet50 764 759 747 T71.6  76.9 Fiohe 76.8 78.2
ResNet101 718 776 753 722 784 78.1 78.3 79.2
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Comparisons of Loss Landscapes

* ResNetl8 on CIFAR10
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