

The University of Hong Kong The Chinese University of Hong Kong SenseTime Research

Differentiable Dynamic Normalization for Learning Deep Representation

Ping Luo^{* 1 2}

Zhanglin Peng* 3

Wenqi Shao^{2 3}

Ruimao Zhang^{2 3}

Jiamin Ren³

Lingyun Wu³

¹The University of Hong Kong

²The Chinese University of Hong Kong

³SenseTime Research

- 1. DN adapts to various networks, tasks, and batch sizes.
- 2. DN can be easily implemented and trained in a **Differentiable** end-to-end manner with merely **small number of parameters**, by replacing the original normalizers.
- 3. DN has **matrix formulation**, representing a wide range of normalization methods (e.g. GroupNorm with any numbers of groups), shedding light on **analyzing them theoretically**.

- 1. DN adapts to various networks, tasks, and batch sizes.
- DN can be easily implemented and trained in a Differentiable end-to-end manner with merely small number of parameters, by replacing the original normalizers.
- 3. DN has matrix formulation, representing a wide range of normalization methods (e.g. GroupNorm with any numbers of groups), shedding light on analyzing them theoretically.

- 1. DN adapts to various networks, tasks, and batch sizes.
- 2. DN can be easily implemented and trained in a **Differentiable** end-to-end manner with merely **small number of parameters**, by replacing the original normalizers.
- 3. DN has matrix formulation, representing a wide range of normalization methods (e.g. GroupNorm with any numbers of groups), shedding light on analyzing them theoretically.

- 1. DN adapts to various networks, tasks, and batch sizes.
- DN can be easily implemented and trained in a Differentiable end-to-end manner with merely small number of parameters, by replacing the original normalizers.
- 3. DN has matrix formulation, representing a wide range of normalization methods (e.g. GroupNorm with any numbers of groups), shedding light on analyzing them theoretically.

• Example: ResNet34 trained with DNs on ImageNet

#groups

• Example: ResNet34 trained with DNs on ImageNet

• Example: ResNet34 trained with DNs on ImageNet

• Example: ResNet34 trained with DNs on ImageNet

A General Normalization Form

Remove means and reduce by variance

feature map
$$\hat{h} = \frac{h - \mu^k}{\sqrt{(\sigma^k)^2 + \epsilon}}$$
 standard deviation

Switchable Normalization: Discrete Learning-to-Normalize

Learn a linear combination of Batch Norm, Instance Norm,
Layer Norm and Group Norm importance ratio, sum to 1

$$\hat{h} = \frac{h - \sum_{k \in \{\text{BN,IN,LN,GN,...}\}} \lambda^k \mu^k}{\sqrt{\sum_{k \in \{\text{BN,IN,LN,GN,...}\}} \lambda^k (\sigma^k)^2 + \epsilon}}$$

A General Normalization Form

Remove means and reduce by variance

Switchable Normalization: Discrete Learning-to-Normalize

Learn a linear combination of Batch Norm, Instance Norm,
Layer Norm and Group Norm importance ratio, sum to 1

$$\hat{h} = \frac{h - \sum_{k \in \{\text{BN,IN,LN,GN,...}\}} \lambda^k \mu^k}{\sqrt{\sum_{k \in \{\text{BN,IN,LN,GN,...}\}} \lambda^k (\sigma^k)^2 + \epsilon}}$$

A General Normalization Form

Remove means and reduce by variance

normalized feature map
$$\hat{h} = \frac{h - \mu^k}{\sqrt{(\sigma^k)^2 + \epsilon}}$$
 standard deviation

Switchable Normalization: Discrete Learning-to-Normalize

Learn a linear combination of Batch Norm, Instance Norm,
Layer Norm and Group Norm importance ratio, sum to 1

$$\hat{h} = \frac{h - \sum_{k \in \{\text{BN,IN,LN,GN,...}\}} \lambda^k \mu^k}{\sqrt{\sum_{k \in \{\text{BN,IN,LN,GN,...}\}} \lambda^k (\sigma^k)^2 + \epsilon}}$$

A General Normalization Form

Remove means and reduce by variance

normalized feature map mean
$$\hat{h} = \frac{h - \mu^k}{\sqrt{(\sigma^k)^2 + \epsilon}}$$
 standard deviation

Switchable Normalization: Discrete Learning-to-Normalize

Learn a linear combination of Batch Norm, Instance Norm,
Layer Norm and Group Norm importance ratio, sum to 1

$$\hat{h} = \frac{h - \sum_{k \in \{\text{BN}, \text{IN}, \text{LN}, \text{GN}, \dots\}} \overline{\lambda^k \mu^k}}{\sqrt{\sum_{k \in \{\text{BN}, \text{IN}, \text{LN}, \text{GN}, \dots\}} \lambda^k (\sigma^k)^2 + \epsilon}}$$

A General Normalization Form

Remove means and reduce by variance

normalized feature map
$$\hat{h} = \frac{h - \mu^k}{\sqrt{(\sigma^k)^2 + \epsilon}}$$
 standard deviation

Switchable Normalization: Discrete Learning-to-Normalize

Learn a linear combination of Batch Norm, Instance Norm,
Layer Norm and Group Norm importance ratio, sum to 1

$$\hat{h} = \frac{h - \sum_{k \in \{\text{BN}, \text{IN}, \text{LN}, \text{GN}, \dots\}} \lambda^k \mu^k}{\sqrt{\sum_{k \in \{\text{BN}, \text{IN}, \text{LN}, \text{GN}, \dots\}} \lambda^k (\sigma^k)^2 + \epsilon}}$$

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \boldsymbol{\mu} \boldsymbol{V}}{\boldsymbol{U} \boldsymbol{\sigma} \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \mu \boldsymbol{V}}{\boldsymbol{U} \sigma \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \boldsymbol{\mu} \boldsymbol{V}}{\boldsymbol{U} \boldsymbol{\sigma} \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \mu \boldsymbol{V}}{\boldsymbol{U} \sigma \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \mu \boldsymbol{V}}{\boldsymbol{U} \sigma \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \mu \boldsymbol{V}}{\boldsymbol{U} \sigma \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \mu \boldsymbol{V}}{\boldsymbol{U} \sigma \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Dynamic Normalization:
$$\widehat{\boldsymbol{h}} = \gamma \frac{\boldsymbol{h} - \boldsymbol{U} \mu \boldsymbol{V}}{\boldsymbol{U} \sigma \boldsymbol{V}} + \beta$$

- $U \in \mathbb{R}^{N \times N}$, $V \in \mathbb{R}^{C \times C}$: two binary diagonal-block matrices
- $\mu, \sigma \in \mathbb{R}^{N \times C}$: means and stds of Instance Normalization (IN), implying that we learn to combine statistics of IN

Experimental Results

ResNet18 on CIFAR10

	(1,128)	(8,8)	(8,4)	(4,8)	(8,2)	(2,8)
BN	94.80	93.31	93.01	94.18	91.55	94.84
GN_{32}	93.67 [†]	90.22^{\dagger}	90.58	92.66^{\dagger}	90.85	93.65 [†]
GN_{16}	93.17	89.49	90.90^{\dagger}	92.32	90.89^{\dagger}	93.21
GN_8	93.33	89.52	90.00	91.92	90.06	92.93
SN	94.40	93.33	93.10	93.87	92.38	94.26
DN	94.98	93.81	93.45	94.67	92.45	94.95

ImageNet

	BN	GN	LN	IN	SN	BRN	BKN	DN
ResNet50	76.4	75.9	74.7	71.6	76.9	76.3	76.8	78.2
ResNet101	77.8	77.6	75.3	72.2	78.4	78.1	78.3	79.2

Comparisons of Loss Landscapes

ResNet18 on CIFAR10

SenseTime Research

The University of Hong Kong The Chinese University of Hong Kong

Differentiable Dynamic Normalization for Learning Deep Representation

Wed Jun 12th 06:30 -- 09:00 PM Room Pacific Ballroom

Poster