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Big and high quality data drives the success of deep models.

Figure: There is a steady reduction of error every year in object classification on large scale dataset
(1000 object categories, 1.2 million training images) [Russakovsky et al., 2015].

However, what we usually have in practice is big data with noisy labels.

(RIKEN & UTS) Co-teaching+ Jun 12th, 2019 3 / 30



Introduction Related works Co-teaching Co-teaching+ Experiments Summary References

Noisy labels from crowdsourcing platforms.

Credit: Torbjørn Marø

Unreliable labels may occur when the workers have limited domain knowledge.
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Noisy labels from web search/crawler.

Screenshot of Google.com

The keywords may not be relevant to the image contents.
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How to model noisy labels?

Class-conditional noise (CCN):
Each label y in the training set (with c classes) is flipped into ỹ with probability p(ỹ |y).
Denote by T ∈ [0, 1](c×c) the noise transition matrix specifying the probability of flipping
one label to another, so that ∀i ,jTij = p(ỹ = j |y = i).

Positive Negative

Decision Boundary

Figure: Illustration of noisy labels.
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What happens when learning with noisy labels?

Figure: Accuracy of neural networks on noisy MNIST with different noise rate (0., 0.2, 0.4, 0.6, 0.8).
(Solid is train, dotted is validation.) [Arpit et al., 2017]

Memorization: Learning easy patterns first, then (totally) over-fit noisy training data.
Effect: Training deep neural networks directly on noisy labels results in accuracy degradation.
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How can wen robustly learn from noisy labels?

Current progress in three orthogonal directions:

Learning with noise transition:
Forward Correction (Australian National University, CVPR’17)
S-adaptation (Bar Ilan University, ICLR’17)
Masking (RIKEN-AIP/UTS, NeurIPS’18)

Learning with selected samples:
MentorNet (Google AI, ICML’18)
Learning to Reweight Examples (University of Toronto, ICML’18)
Co-teaching (RIKEN-AIP/UTS, NeurIPS’18)

Learning with implicit regularization:
Virtual Adversarial Training (Preferred Networks, ICLR’16)
Mean Teachers (Curious AI, NIPS’17)
Temporal Ensembling (NVIDIA, ICLR’17)
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Learning with small-loss instances

A promising research line: Learning with small-loss instances

Main idea: regard small-loss instances as “correct” instances.

Figure: Self-training MentorNet[Jiang et al., 2018].

Benefit: easy to implement & free of assumptions.

Drawback: accumulated error caused by sample-selection bias.
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Learning with small-loss instances

A promising research line: Learning with small-loss instances

Consider the standard class-conditional noise (CCN) model.

We can learn a reliable classifier if a set of clean data is available.

Then, we can use the reliable classifier to filter out the noisy data, where “small loss”
serves as a gold standard.

However, we usually only have access to noisy training data. The selected small-loss
instances are only likely to be correct, instead of totally correct.

(Problem) There exists accumulated error caused by sample-selection bias.

(Solution 1) In order to select more correct samples, can we design a “small-loss” rule by
utilizing the memorization of deep neural networks?
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Decoupling

Related work: Decoupling

Figure: Decoupling[Malach and Shalev-Shwartz, 2017].

Easy samples can be quickly learnt and classified (memorization effect).

Decoupling focus on hard samples, which can be more informative.

Decoupling use samples in each mini-batch that two classifiers have disagreement in
predictions to update networks.

(Solution 2) Can we further attenuate the error from noisy data by utilizing two networks?
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Co-teaching: Cross-update meets small-loss

Figure: Co-teaching[Han et al., 2018].

Co-teaching maintains two networks (A & B) simultaneously.

Each network samples its small-loss instances based on memorization of neural networks.

Each network teaches such useful instances to its peer network. (Cross-update)
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Divergence
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Disagreement Co-teaching Co-teaching+

Two networks in Co-teaching will converge to a consensus gradually.
However, two networks in Disagreement will keep diverged.
We bridge the “Disagreement” strategy with Co-teaching to achieve Co-teaching+.
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How does Disagreement Benefit Co-teaching?

Disagreement-update step: Two networks feed forward and predict all data first, and only
keep prediction disagreement data.

Cross-update step: Based on disagreement data, each network selects its small-loss data,
but back propagates such data from its peer network.
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Co-teaching+ Paradigm
1: Input w (1) and w (2), training set D, batch size B, learning rate η, estimated noise rate τ ,

epoch Ek and Emax;
for e = 1, 2, . . . ,Emax do

2: Shuffle D into |D|B mini-batches; //noisy dataset

for n = 1, . . . , |D|B do
3: Fetch n-th mini-batch D̄ from D;
4: Select prediction disagreement D̄′ = {(xi , yi ) : ȳ

(1)
i 6= ȳ

(2)
i };

5: Get D̄′(1) = arg minD′:|D′|≥λ(e)|D̄′| `(D′;w (1)); //sample λ(e)% small-loss instances

6: Get D̄′(2) = arg minD′:|D′|≥λ(e)|D̄′| `(D′;w (2)); //sample λ(e)% small-loss instances

7: Update w (1) = w (1) − η∇`(D̄′(2);w (1));//update w (1) by D̄′(2);
8: Update w (2) = w (2) − η∇`(D̄′(1);w (2));//update w (2) by D̄′(1);

end

9: Update λ(e) = 1−min{ e
Ek
τ, τ} or 1−min{ e

Ek
τ, (1 + e−Ek

Emax−Ek
)τ}; (memorization helps)

end

10: Output w (1) and w (2).

Co-teaching+: Step 4: disagreement-update; Step 5-8: cross-update.
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Relations to other approaches

Table: Comparison of state-of-the-art and related techniques with our Co-teaching+ approach.
“small loss”: regarding small-loss samples as “clean” samples;
“double classifiers”: training two classifiers simultaneously;
“cross update”: updating parameters in a cross manner;
“divergence”: keeping two classifiers diverged during training.

MentorNet Co-training Co-teaching Decoupling Co-teaching+

small loss X × X × X
double classifiers × X X X X

cross update × X X × X
divergence × X × X X
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Datasets for CCN model

Table: Summary of data sets used in the experiments.

# of train # of test # of class size

MNIST 60,000 10,000 10 28×28

CIFAR-10 50,000 10,000 10 32×32

CIFAR-100 50,000 10,000 100 32×32

NEWS 11,314 7,532 7 1000-D

T-ImageNet 100,000 10,000 200 64×64
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Noise Transitions for CCN model

We manually generate class-conditional noisy labels using two types of noise transitions:

(a) Pair (ε = 45%). (b) Symmetry (ε = 50%).

Figure: Different noise transitions (using 5 classes as an example) [Han et al., 2018].
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Baselines

MentorNet: small-loss trick;

Co-teaching: small-loss and cross-update trick.

Decoupling: instances that have different predictions;

F-correction: loss correction on transition matrix;

Standard: directly training on noisy datasets.
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Network structures

Table: MLP and CNN models used in our experiments on MNIST, CIFAR-10, CIFAR-100/Open-sets,
and NEWS.

MLP on MNIST CNN on CIFAR-10 CNN on CIFAR-100/Open-sets MLP on NEWS

28×28 Gray Image 32×32 RGB Image 32×32 RGB Image 1000-D Text

3×3 Conv, 64 BN, ReLU 300-D Embedding
5×5 Conv, 6 ReLU 3×3 Conv, 64 BN, ReLU Flatten → 1000×300

2×2 Max-pool 2×2 Max-pool Adaptive avg-pool → 16×300
3×3 Conv, 128 BN, ReLU

Dense 28×28 → 256, ReLU 5×5 Conv, 16 ReLU 3×3 Conv, 128 BN, ReLU Dense 16×300 → 4×300
2×2 Max-pool 2×2 Max-pool BN, Softsign

3×3 Conv, 196 BN, ReLU
Dense 16×5×5 → 120, ReLU 3×3 Conv, 196 BN, ReLU Dense 4×300 → 300

Dense 120 → 84, ReLU 2×2 Max-pool BN, Softsign

Dense 256 → 10 Dense 84 → 10 Dense 256 → 100/10 Dense 300 → 7
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MNIST

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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(a) Pair-45%.
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(b) Symmetry-50%.
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(c) Symmetry-20%.

Figure: Test accuracy vs number of epochs on MNIST dataset.
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CIFAR-10

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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(a) Pair-45%.
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(b) Symmetry-50%.
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(c) Symmetry-20%.

Figure: Test accuracy vs number of epochs on CIFAR-10 dataset.
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CIFAR-100

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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(a) Pair-45%.
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(b) Symmetry-50%.
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(c) Symmetry-20%.

Figure: Test accuracy vs number of epochs on CIFAR-100 dataset.
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NEWS

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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(a) Pair-45%.

0 25 50 75 100 125 150 175 200

Epoch

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

T
es

t
A

cc
u

ra
cy

(NEWS, Symmetry-50%)

(b) Symmetry-50%.
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(c) Symmetry-20%.

Figure: Test accuracy vs number of epochs on NEWS dataset.
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T-ImageNet

Table: Averaged/maximal test accuracy (%) of different approaches on T-ImageNet over last 10
epochs. The best results are in blue.

Flipping-Rate(%) Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+

Pair-45% 26.14/26.32 26.10/26.61 0.63/0.67 26.22/26.61 27.41/27.82 26.54/26.87

Symmetry-50% 19.58/19.77 22.61/22.81 32.84/33.12 35.47/35.76 37.09/37.60 41.19/41.77

Symmetry-20% 35.56/35.80 36.28/36.97 44.37/44.50 45.49/45.74 45.60/46.36 47.73/48.20
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Open-sets

Open-set noise:
An open-set noisy label occurs when a noisy sample possesses a true class that is not
contained within the set of known classes in the training data.

Open-sets: CIFAR-10 noisy dataset with 40% open-set noise from CIFAR-100, ImageNet32,
and SVHN.

CIFAR-100   ImageNet32         SVHN

Figure: Examples of open-set noise for “airplane” in CIFAR-10 [Wang et al., 2018].
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Open-sets

Table: Averaged/maximal test accuracy (%) of different approaches on Open-sets over last 10 epochs.
The best results are in blue.

Open-set noise Standard MentorNet Iterative[Wang et al., 2018] Co-teaching Co-teaching+

CIFAR-10+CIFAR-100 62.92 79.27/79.33 79.28 79.43/79.58 79.28/79.74

CIFAR-10+ImageNet-32 58.63 79.27/79.40 79.38 79.42/79.60 79.89/80.52

CIFAR-10+SVHN 56.44 79.72/79.81 77.73 80.12/80.33 80.62/80.95
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Summary

Conclusion:

This paper presents Co-teaching+, a robust model for learning on noisy labels.

Three key points towards robust training on noisy labels:

1) use small-loss trick based on memorization effects of deep networks;
2) cross-update parameters of two networks;
3) keep two networks diverged during training.

Future work:

Investigate the theory of Co-teaching+ from the view of disagreement-based algorithms
[Wang and Zhou, 2017].
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Link to our paper:

Our poster will be:
Wed Jun 12th 06:30 – 09:00 PM@Pacific Ballroom #21

Thank you very much for your attention!
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