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But... many real world tasks are multi-modal!

v A group of people riding horses.

v" Kids riding horses with adults help.

v' A girl poses on her horse in equestrian dress by a small
crowd.

v" Some people stand near some horses in a field.

v’ People are standing around children riding horses in a
grassy area.

v" A small girl is riding a large light brown horse.

v" Ayoung girl in riding gear mounts a pony in front of a
group.

v A group of people with a jockey and her horse

v’ Several people playing with ponies in a park.

[ How to model more than one correct output? ]
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Beam Search outputs are nearly identical!

on a field.

in

down a dirt road.

through a field.
on the back of horses.

a horse.

a horse.
» A couple the back of horses.
a horse.

horses on a field.

[ Doesn’t model intra-set interactions! ]
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[Fails to COVER the variation in the output space! ]
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Learning to Decode Sets of Sequences

Select top-B words at each time step
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Learning to Decode Sets of Sequences

Select top-B words at each time step
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Beam Search as Subset Selection
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Submodular Maximization for Subset Selection
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Trainable Decoding of Sets of Sequences for Neural Sequence Models

Learning Submodular Functions
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V BS (diff-BS)

FORt=1toT:
1. Construct set of all possible extensions
/::\ yt—l X ‘V|
— —— —— FORk=1toKk:
- 0 — 2. Compute marginal gain of each
— | |___| [ extension

3. Sample an extension proportional to
marginal gain
RETURN Set of K Sequences of length T
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“Set of Sequences” Level Training

" = argmax Biy;, . v~ SET = METRIC(Y |x)
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“Set of Sequences” Level Training

7 = arg max L oyy . V) () S ET—METRIC(Y |x)
7T
e Set-metric?
 Oracle, average accuracy
* Facility Location Accuracy [NEW|

* Training?
» Teacher Forcing if multiple annotations are available

* Imitation Learning if expert is available
 REINFORCE to directly optimize for the set-metric
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In Summary

* Novel perspective. Beam Search as Subset Selection

* Models intra-set dependencies

* Can be used with arbitrary set constraints

* No train-test or loss-evaluation mismatch

e Qutperforms Beam Search and other baselines on captioning

Doesn’t scale very well with beam size (some tricks in the paper)
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Paper: http://proceedings.mlr.press/v97/kalyan19a.html

Code: https://github.com/ashwinkalyan/diff-bs




