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Knowledge graphs

n Knowledge graphs (KGs) store a wealth of structured facts about the real world 
¡ A fact !, #, $ : subject entity, relation, object entity

n KGs are far from complete and two important tasks are proposed
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Knowledge graphs

n Knowledge graphs (KGs) store a wealth of structured facts about the real world 
¡ A fact !, #, $ : subject entity, relation, object entity

n KGs are far from complete and two important tasks are proposed
1. Entity alignment: find entities in

different KGs denoting the same
real-world object

2. KG completion: complete missing facts in a single KG
n E.g., predict ? in (Tim Berners-Lee, employer, ?) or (?, employer, W3C)
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Challenges

n For KG embedding, existing methods largely focus on learning from relational 
triples of entities

n Triple-level learning has two major limitations
¡ Low expressiveness 

n Learn entity embeddings from a fairly local view (i.e., 1-hop neighbors)

¡ Inefficient information propagation 
n Only use triples to deliver semantic information within/across KGs
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Learning to exploit long-term relational dependencies

n A relational path is an entity-relation chain, where entities and relations appear 
alternately

n RNNs perform well on sequential data
¡ Limitations to leverage RNNs to model relational paths

1. A relational path have two different types: “entity” and “relation”
¡ Always appear in an alternating order

2. A relational path is constituted by triples, but these basic structure units are overlooked by RNNs
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United Kingdom → country – → Tim Berners-Lee → employer → W3C



Recurrent skipping networks

n A conditional skipping mechanism allows RSNs to shortcut the current input entity 
to let it directly participate in predicting its object entity
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Tri-gram residual learning

n Residual learning 
¡ Let !(#) be an original mapping, and %(#) be the expected mapping

¡ Compared to directly optimizing !(#) to fit %(#), 
it is easier to optimize !(#) to fit residual part %(#)
n An extreme case, %(#) = #
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Tri-gram residual learning

n Residual learning 
¡ Let !(#) be an original mapping, and %(#) be the expected mapping

¡ Compared to directly optimizing !(#) to fit %(#), 
it is easier to optimize !(#) to fit residual part %(#)
n An extreme case, %(#) = #

n Tri-gram residual learning
¡ United Kingdom → country – → Tim Berners-Lee → employer → W3C

¡ Compared to directly learning to predict W3C by employer and its mixed context, it is easier to 
learn the residual part between W3C and Tim Berners-Lee 

n Because they forms a triple, and we should not overlook the triple structure in the paths
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(United Kingdom, country –, Tim Berners-Lee, employer, W3C)

Models Optimize !([)], employer) as

RNNs ! ) , employer ≔ W3C

RRNs ! ) , employer ≔ W3C− )
RSNs ! ) , employer ≔ W3C− Tim Berners−Lee
) denotes context (United Kingdom, country –, Tim Berners-Lee)



Architecture

n An end-to-end framework
1. Biased random walk sampling 

n Deep paths carry more relational dependencies than triples

n Cross-KG paths deliver alignment information between KGs

2. Recurrent skipping network 

3. Type-based noise contrastive estimation
n Evaluate loss in an optimized way
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United Kingdom → country–→ Tim Berners-Lee → employer → W3C
……
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Experiments and results

n Entity alignment results 
¡ Datasets: normal & dense

¡ Performed best on all datasets

n Especially on the normal datasets 
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Hits@1 DBP-WD DBP-YG EN-FR EN-DE

MTransE 22.3 24.6 25.1 31.2

IPTransE 23.1 22.7 25.5 31.3

JAPE 21.9 23.3 25.6 32.0

BootEA 32.3 31.3 31.3 44.2

GCN-Align 17.7 19.3 15.5 25.3

TransR 5.2 2.9 3.6 5.2

TransD 27.7 17.3 21.1 24.4

ConvE 5.7 11.3 9.4 0.8

RotatE 17.2 15.9 14.5 31.9

RSNs (w/o biases) 37.2 36.5 32.4 45.7

RSNs 38.8 40.0 34.7 48.7
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Experiments and results

n Entity alignment results 

¡ Datasets: normal & dense

¡ Performed best on all datasets

n Especially on the normal datasets 

n KG completion results 

¡ Datasets: FB15K, WN18

¡ Obtained comparable performance 

n Better than all translational models
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Hits@1 DBP-WD DBP-YG EN-FR EN-DE

MTransE 22.3 24.6 25.1 31.2

IPTransE 23.1 22.7 25.5 31.3

JAPE 21.9 23.3 25.6 32.0

BootEA 32.3 31.3 31.3 44.2

GCN-Align 17.7 19.3 15.5 25.3

TransR 5.2 2.9 3.6 5.2

TransD 27.7 17.3 21.1 24.4

ConvE 5.7 11.3 9.4 0.8

RotatE 17.2 15.9 14.5 31.9

RSNs (w/o biases) 37.2 36.5 32.4 45.7

RSNs 38.8 40.0 34.7 48.7

FB15K Hits@1 Hits@10 MRR

TransE 30.5 73.7 0.46

TransR 37.7 76.7 0.52

TransD 31.5 69.1 0.44

ComplEx 59.9 84.0 0.69

ConvE 67.0 87.3 0.75

RotatE 74.6 88.4 0.80

RSNs (w/o cross-KG biase) 72.2 87.3 0.78
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Further analysis

n RSNs vs. RNNs, RRNs [recurrent residual networks]

¡ Achieved better results with only 1/30 epochs
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Further analysis

n RSNs vs. RNNs, RRNs [recurrent residual networks]

¡ Achieved better results with only 1/30 epochs

n Random walk length 
¡ On all the datasets, increased steadily from 

length 5 to 15

13Introduction ➤ Our method ➤ Experiments and results ➤ Conclusion

65

70

75

80

85

5 7 9 11 13 15 17 19 21 23 25

H
its
@
1

Random walk length

DBP-WD DBP-YG
EN-FR EN-DE

30

35

40

45

50

5 7 9 11 13 15 17 19 21 23 25

H
its
@
1

Random walk length

DBP-WD DBP-YG
EN-FR EN-DE

normal dense

0

0.1

0.2

0.3

0.4

H
its

@
1

(a) DBP-WD (normal)

RSNs RRNs (SC-LSTM) RNNs

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

H
its

@
1

Epochs

(b) DBP-WD (dense)



Conclusion

n We studied path-level KG embedding learning

1. RSNs: sequence models to learn relational paths

2. End-to-end framework: biased random walk sampling + RSNs

3. Superior in entity alignment and competitive in KG completion

n Future work
¡ Unified sequence model: relational paths & textual information
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Datasets & source code: https://github.com/nju-websoft/RSN
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