- "This is how you randomize a beam search!" Wouter Kool, Herke van Hoof, Max Welling

STOCHASTIC

AND WHERE TO FIND THEM

The Gumbel-Top-k Trick for Sampling Sequences Without Replacement

ORTEC AMAB **OPTIMIZE** YOUR WORLD

- "You will never have

duplicate samples again!"

(log-)probability P(C)P(A|C)CC CA P(C|CA)(CCC) ACA CAA (AAC) (CAC) (CCA) (AAA) P(C) P(A|C) P(C|CA) = P(CAC)

Example Binarese language model Vocabulary: {Abra, Cadabra}

What if we want a sample from our model?

"Prof. Gumbeldore"

(Gumbel, 1945; Maddison et al., 2014)

 $\phi_i = \log p_i$

 $G_i \sim \text{Gumbel}(0)$

 $G_{\phi_i} \sim \text{Gumbel}(\phi_i)$

log-probability

Gumbel noise

perturbed log-probability

"Prof. Gumbeldore"

(Gumbel, 1945; Maddison et al., 2014)

max and argmax are *independent*

$$I = \underset{i}{\operatorname{argmax}} G_{\phi_i} \sim \operatorname{Categorical}(p_i)$$

$$P(I=i)=p_i$$

(log-)probability c)[$\left(\mathrm{AC} \right) \square$ CC AA CA (ACC) (AAC) (CAC)(ACA) (CAA) (CCC)This will be our sample!

Example Binarese language model Vocabulary: {Abra, Cadabra}

What if we want a sample from our model?

What happens if, instead of I (one), we take the k largest elements (top k)?

$$P(I_{1} = i_{1}, ..., I_{k} = i_{k})$$

$$= p_{i_{1}} \cdot \frac{p_{i_{2}}}{1 - p_{i_{1}}} \cdot ... \cdot \frac{p_{i_{k}}}{1 - \sum_{\ell=1}^{k-1} p_{i_{\ell}}}$$

$$= \prod_{j=1}^{k} \frac{p_{i_{j}}}{1 - \sum_{\ell=1}^{j-1} p_{i_{\ell}}} \qquad \text{Also known as Plackett-Luce}$$

 $I_1, \dots, I_k = \underset{i}{\operatorname{arg top }} k G_{\phi_i}$

This is equivalent to repeated sampling without replacement!

(Vieira, 2014)

Example Binarese language model (log-)probability Vocabulary: {Abra, Cadabra} \mathbf{C} $\left(\mathrm{AC} \right) \square$ CC AA We can get a set of unique samples CAA (AAC)CAC from our model! This will be our set of samples!

Look at maximum of perturbed log-probabilities in subtree

Sample children $G_{\phi_{S'}}$ conditionally on $\max_{S' \in \text{Children}(S)} G_{\phi_{S'}} = G_{\phi_S}$

. sample $G_{\phi_{S'}}$ independently, compute $Z = \max_{S'} G_{\phi_{S'}}$

'shift' Gumbels in (negative) exponential space:

$$\tilde{G}_{\phi_{S'}} = -\log\left(\exp(-G_{\phi_S}) - \exp(-Z) + \exp(-G_{\phi_{S'}})\right)$$

... the result is equivalent to sampling G_{ϕ_i} for leaves directly!

(Maddison et al., 2014)

We only need to expand the top k nodes at each level in the tree

This is a beam search

Top *k* according to perturbed log-probability

ullet Gumbel-Top-k

Sampling (without replacement)

• A beam search that samples the nodes to expand

Important!

- But... samples children conditionally on parent
- The result is a sample without replacement from the full sequence model
- Is a generalization of ancestral sampling (k = 1)

- Generate *k* translations
- Plot BLEU against diversity
- Vary softmax temperature
- Compare:
 - Beam Search
 - Stochastic Beam Search
 - Sampling
 - Diverse Beam Search (Vijayakumar et al., 2018)

- Estimate expected sentencelevel BLEU
- Plot mean and 95% interval vs. num samples
- Compare:
 - Monte Carlo Sampling
 - Stochastic Beam Search with (normalized) Importance Weighted estimator
 - Beam Search with deterministic estimate

Wouter Kool, Herke van Hoof, Max Welling

STOCHASTIC

AND WHERE TO FIND THE POSTER?

ORTEC AMAB

OPTIMIZE YOUR WORLD

