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Motivation

* ASR and TTS can achieve good performance given large amount
of paired data. However, there are many low-resource languages
In the world that are lack of supervised data to build TTS and ASR
systems.

* We propose a practical way to leverage few paired data and
additional unpaired speech and text data to build TTS and ASR
systems.



Model Architecture
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Denoising Auto-Encoder

* We adopt denosing auto-encoder to build these

capabillities. (Green and yellow lines)

* Representation extraction: how to understand the speech

or text sequence.

* Language modeling: how to model and generate sequence

In speech and text domain.
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Dual Transtormation

* Dual transformation is the key component to leverage the dual
nature of TTS and ASR, and develop the capability of speech-text
conversion.
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Bidirectional Sequence Modeling

* Seguence generation suffers from error propagation problem, especially for the
Speech sequence, which is usually longer than text.

* Due to dual transformation, the later part of the sequence Is always of low quality.

* We propose the bidirectional sequence modeling (BSM) that generates the
sequence In both left-to-right and right-to-left directions.
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Audio Samples
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Results

Our Method: leverages 200 paired data + 12300 unpaired data
Pair-200: leverages only 200 paired data
Supervised: leverages all the 12500 paired data

GT: the ground truth audio

GT (Griffin-Lim): the audio generated from ground truth mel-spectrograms

using Griffin-Lim algorithm

Method MOS (TTS) | PER (ASR)
GT 4.54 -

GT (Griffin-Lim) 3.21 -
Supervised 3.04 2.5%
Pair-200 Null 72.3%
Our Method 2.68 11.7%
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* Our method only leverages 200 paired speech and text data, and additional unpaired data
* Greatly outperforms the method only using 200 paired data
* Close to the performance of supervised method (using 12500 paired data)
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Experiments

* Training and evaluation setup
* Datasets
* |JSpeech contains 13100 audio clips and transcripts, approximately 24 hours.

* Evaluation
* TTS: Intelligibility Rate and MOS (mean opinion score)
* ASR: PER (phoneme error rate)



Analysis

* Ablation Study on different components of our method

Method MOS (TTS) | PER (ASR)
Pair-200 Null 72.3%
Pair-200+DAE Null 52.0%
Pair-200+DAE+DT 2.11 15.3%
Pair-200+DAE+DT+BSM 2.51 11.7%
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