Conditioning by adaptive sampling for robust design

David Brookes

Biophysics Graduate Group University California, Berkeley Jennifer Listgarten

EECS and Center for Computational Biology
University California, Berkeley

- Proteins are made up of sequences of amino acids (20 possibilities)
- Huge variety of proteins whose function we would like to improve

- Proteins are made up of sequences of amino acids (20 possibilities)
- Huge variety of proteins whose function we would like to improve

Proteins that fluoresce

- Proteins are made up of sequences of amino acids (20 possibilities)
- Huge variety of proteins whose function we would like to improve

Proteins that fluoresce

... that act as drugs

- Proteins are made up of sequences of amino acids (20 possibilities)
- Huge variety of proteins whose function we would like to improve

Proteins that fluoresce

... that fixate carbon in the atmosphere

... that act as drugs

- Proteins are made up of sequences of amino acids (20 possibilities)
- Huge variety of proteins whose function we would like to improve

Proteins that fluoresce

... that fixate carbon in the atmosphere

.... that act as drugs

... that deliver gene-editing tools to tissues

How to map sequence to function?

A law of molecular biology:

Sequence

VTLDLONSTEKFGGFLRSALDV VTLDLQNSTEKFGGFLRSALDV VTLDLQNSTEKFGGFLRSALDV VTLDLQNSTEKFGGFLRSALDV VTLDLQNSTEKFGGFLRSALDV VTLDLQNSTEKFGGFLRSALDV

Function

ex: fluorescence

Bypassing the structure relationships

A law of molecular biology:

High throughput experiments (& ML)

Can we solve the inverse problem?

A law of molecular biology:

Design problem: Given a model, find sequences with desired function

Why is protein design difficult?

• Huge, rugged search space

 \Rightarrow size scales as 20^L

Why is protein design difficult?

• Huge, rugged search space

 \Rightarrow size scales as 20^L

Discrete search space (no gradients)

Why is protein design difficult?

- Huge, rugged search space
- \Rightarrow size scales as 20^L
- Discrete search space (no gradients)
- Uncertainty in predictor

https://livingthing.danmackinlay.name/gaussian_processes.html69

Idea: replace the standard (hard) objective

$$\max_{oldsymbol{x} \in \mathcal{X}} f(oldsymbol{x})$$
 e.g. the space of sequences

Idea: replace the standard (hard) objective with a potentially easier one

Idea: replace the standard (hard) objective with a potentially easier one

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}) \qquad \qquad \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{\theta})}[f(\boldsymbol{x})]$$

Solution approach is to iterate:

- 1. Sample from "search model" $p(x|\theta)$
- 2. Evaluate samples on f(x)
- 3. Adjust θ so the model favors samples with large function evals

Idea: replace the standard (hard) objective with a potentially easier one

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}) \qquad \qquad \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{\theta})}[f(\boldsymbol{x})]$$

Solution approach is to iterate:

- 1. Sample from "search model" $p(x|\theta)$
- 2. Evaluate samples on f(x)
- 3. Adjust θ so the model favors sequences with large function evals

- ✓ Model can sample broad areas of sequence space
- ✓ Does not require gradients of *f*
- Can incorporate uncertainty

Our aim is solve the MBO objective:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

Our aim is solve the MBO objective:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

where

• $p(x|\theta)$ is the search model (VAE, HMM...)

Our aim is solve the MBO objective:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

where

- $p(x|\theta)$ is the search model (VAE, HMM...)
- *S* is desired set of property values
 - \rightarrow e.g. fluorescence > α

Our aim is solve the MBO objective:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

where

- $p(x|\theta)$ is the search model (VAE, HMM...)
- *S* is desired set of property values
 - \rightarrow e.g. fluorescence > α
- P(S|x) is a stochastic predictive model ("oracle") that maps sequences to property

Two issues:

1. θ is in the expectation distribution.

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

Two issues:

1. θ is in the expectation distribution.

maximize a lower bound

$$\arg\max_{\boldsymbol{\theta}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right],$$

$$\downarrow \geq$$

$$\arg\max_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

Two issues:

- 1. θ is in the expectation distribution.
- 2. MC estimates for rare events.

maximize a lower bound

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right],$$

$$\underset{\boldsymbol{\theta}}{\blacksquare} \geq \underset{\boldsymbol{\theta}}{\square} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right]$$

Two issues:

- 1. θ is in the expectation distribution.
- 2. MC estimates for rare events.

maximize a lower bound

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right],$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

anneal a sequence of relaxations:

$$S^t \rightarrow S$$
, where $S^t \supset S^{t+1}$

Two issues:

- 1. θ is in the expectation distribution.
- 2. MC estimates for rare events.

maximize a lower bound

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right],$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

Anneal and MC

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

maximize a lower bound

Two issues:

- 1. θ is in the Assumes oracle is unbiased and has good uncertainty estimates
 - 2. MC estimates for range $\frac{\ln x}{\theta} = \frac{\ln x}{\ln x} \frac{\ln x}{\theta} \frac{\ln x}{\theta} = \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} = \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} = \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} \frac{\ln x}{\theta} = \frac{\ln x}{\theta} \frac{\ln x}$
 - Anneal and MC

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

Many training examples

Idea: estimate training distribution of x conditioned on high values of oracle

Fixing pathological oracles w/ conditioning

Idea: estimate training distribution of x conditioned on high values of oracle

Fixing pathological oracles w/ conditioning

Idea: estimate training distribution of x conditioned on high values of oracle

Don't have access to training distribution, but can build a model $p(\pmb{x}|\pmb{ heta}^{(0)})$ to approximate it

Previous formulation:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

Anneal and MC

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

New formulation:

 $p(x|\boldsymbol{\theta^{(0)}})$ models the training distribution

Previous formulation:

$$\operatorname*{argmax}_{\boldsymbol{\theta}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

Anneal and MC

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

New formulation:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} D_{KL} \left(p(\mathbf{x}|S, \boldsymbol{\theta}^{(0)}) || p(\mathbf{x}|\boldsymbol{\theta}) \right)$$

$$\downarrow =$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(0)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right]$$

Previous formulation:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

Anneal and MC

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

New formulation:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} D_{KL} \left(p(\mathbf{x}|S, \boldsymbol{\theta}^{(0)}) || p(\mathbf{x}|\boldsymbol{\theta}) \right)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(0)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right]$$

Can't anneal when sampling dist. doesn't change!

Previous formulation:

$$\operatorname*{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

Anneal and MC

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

New formulation:

argmin
$$D_{KL}\left(p(\mathbf{x}|S, \boldsymbol{\theta}^{(0)})||p(\mathbf{x}|\boldsymbol{\theta})\right)$$

$$= \operatorname{argmax} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(0)})}\left[P(S|\mathbf{x})\log p(\mathbf{x}|\boldsymbol{\theta})\right]$$

$$= \operatorname{argmax} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(0)})}\left[\frac{p(\mathbf{x}|\boldsymbol{\theta}^{(0)})}{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})}P(S|\mathbf{x})\log p(\mathbf{x}|\boldsymbol{\theta})\right]$$

Importance sampling proposal dist.

Conditioning by Adaptive Sampling (CbAS)

Previous formulation:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \left[P(S|\mathbf{x}) \right]$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right].$$

Anneal and MC

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

New formulation:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} D_{KL} \left(p(\mathbf{x}|S, \boldsymbol{\theta}^{(0)}) || p(\mathbf{x}|\boldsymbol{\theta}) \right)$$

$$\operatorname*{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(0)})} \left[P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right]$$

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} \left[\frac{p(\mathbf{x}|\boldsymbol{\theta}^{(0)})}{p(\mathbf{x}|\boldsymbol{\theta}^{(t)})} P(S|\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) \right]$$

Anneal and MC

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{M} \frac{p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta}^{(0)})}{p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta}^{(t)})} P(S^{(t)}|\mathbf{x}_{i}^{(t)}) \log p(\mathbf{x}_{i}^{(t)}|\boldsymbol{\theta})$$

Testing is fundamentally different

 We don't trust our oracle and generally can't query the ground truth

Testing is fundamentally different

- We don't trust our oracle and generally can't query the ground truth
- We can't hold-out a test set of good sequences
 - Near-zero chance of any of these sequences being found by the method

Testing is fundamentally different

- We don't trust our oracle and generally can't query the ground truth
- We can't hold-out a test set of good sequences
 - Near-zero chance of any of these sequences being found by the method
- We can't use some canonical test function as the oracle
 - In our problem it is untrustworthy

Testing strategy

- Simulate a ground truth based on real data
 - → "Ground truth" is a GP mean function

Testing strategy

- Simulate a ground truth based on real data
 - → "Ground truth" is a GP mean function
- Ground truth vales values are sampled from the GP for given sequences
- Use these input-output pairs to train oracles.

Testing strategy

- Simulate a ground truth based on real data
 - → "Ground truth" is a GP mean function
- Ground truth vales values are sampled from the GP for given sequences
- Use these input-output pairs to train oracles
- Coerce training set so these oracles exhibit pathologies

Model-based optimizations

Use weighted ML updates with weights:

• CbAS:
$$\frac{p(x|\theta^{(0)})}{p(x|\theta^{(t)})}P(S^{(t)}|x)$$

• DbAS: $P(S^{(t)}|x)$

• RWR: $e^{\alpha f(x)}$

• CEM-PI: $\mathbb{I}_{\{PI(x)>\gamma^{(t)}\}}(x)$

• FB-VAE: $\mathbb{I}_{\{f(x)>\gamma^{(t)}\}}(x)$ w/ additional considerations

Model-based optimizations

Gradient descent on latent spaces

What does each bar represent?

	Oracle	Ground truth
Seq1		
Seq2		
Seq3		
Seq4		
Seq5		
Seq6		
Seq7		
Seq8		
Seq9		

What does each bar represent?

Wrap-up

- Introduced a new model-based optimization method that is robust to pathological oracles
- Specifically targeted for discrete design problems
- Ongoing work to move beyond proof-of-principle:
 - Collaboration with wet-lab to perform end-to-end validation

Thanks!

Funding:

