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Motivating problem: design protein sequences

* Proteins are made up of sequences of amino acids (20 possibilities)
* Huge variety of proteins whose function we would like to improve
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Motivating problem: design protein sequences

* Proteins are made up of sequences of amino acids (20 possibilities)
* Huge variety of proteins whose function we would like to improve
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How to map sequence to function?

A law of molecular biology:

Sequence Structure Function

—
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ex: fluorescence

http://www.rcsb.org/structure/6FWW
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Bypassing the structure relationships

A law of molecular biology:

Sequence Structure Function
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High throughput experiments (& ML)

http://www.rcsb.org/structure/6FWW
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Can we solve the inverse problem?

A law of molecular biology:

Sequence Structure Function
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Design problem: Given a model, find sequences with desired function

http://www.rcsb.org/structure/6FWW
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Why is protein design difficult?

* Huge, rugged search space 1O -

— size scales as 20% 1010 -
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Why is protein design difficult?

 Huge, rugged search space 10
= size scales as 20* 101 -
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Possible solution: model-based optimization (MBO)

ldea: replace the standard (hard) objective
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the space of sequences model over sequence space
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1. Sample from “search model” p(x|0)
2. Evaluate samples on f(x)

3. Adjust 8 so the model favors samples
with large function evals



Possible solution: model-based optimization (MBO)

|dea: replace the standard (hard) objective with a potentially easier one

max f(x) s  Max

rcX AcRY

Solution approach is to iterate:

1.
2.
3.

Sample from “search model” p(x|0)
Evaluate samples on f(x)

Adjust 8 so the model favors
sequences with large function evals

(o) Lf ()]

v" Model can sample broad
areas of sequence space

v Does not require
gradients of f

v Can incorporate
uncertainty



First attempt at MBO for protein design:
Design by Adaptive Sampling (DbAS)

Our aim is solve the MBO objective:

argmax log [E,,x|) [P(5]x)]
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First attempt at MBO for protein design:
Design by Adaptive Sampling (DbAS)

Our aim is solve the MBO objective:

argmax log [E,,x|) [P(5]x)]
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* p(x|0) is the search model (VAE, HMM...) Ll
 Sisdesired set of property values
- e.g. fluorescence > «

 P(S]|x) is a stochastic predictive model (“oracle”)
that maps sequences to property




Design by Adaptive Sampling (cont.)

Two issues:

1. 6@ is in the expectation argmax log |, x|g) [P(5]x)]

distribution. /\_9//




Design by Adaptive Sampling (cont.)

maximize a lower bound
Two issues:

istribution. 1 =
[P(S|x) log p(x|6)]
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maximize a lower bound
Two issues:

l. l .l l. : 1 2
2. MC estimates for rare argmax £, g0y [P(S|x) log p(x|0)]
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Design by Adaptive Sampling (cont.)

maximize a lower bound

Two issues:
1 Qisintl :
-distribution. | >
argmax [, g0y [P(S]x)log p(x|0)]
-events. 0

anneal a sequence of relaxations:
St - S, where St o Stt1
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maximize a lower bound
Two issues:

1. Bisintl ati
-distribution. |1 >
argmax £, g0 [P(S]x) log p(x|0)]
-events. 6
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Design by Adaptive Sampling (cont.)

maximize a lower bound

Two issues:

. " 1Assumes oracle is unbiased and
.|has good uncertainty estimates

l Anneal and MC

M
6+ — argmax Z P(SW |x§t)) log p(xgt) 9)
o =1



How pathological oracles lead you astray

y and p(x
o
oo

=== Ground Truth
== = Training distribution
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Acceptable

Ground Truth
Oracle Mean

== = Training distribution
Oracle stddev

o ————

Many training examples

Pathological

Fewer training examples



How pathological oracles lead you astray

Acceptable Pathological
1.6 A Ground Truth 1.6 A
Oracle Mean
1.4 - = = Training distribution 1.4 -
Oracle stddev
1.2 1 1.2 1
= 1.0 A = 1.0 A

ldea: estimate training distribution of x conditioned on high values of oracle



Fixing pathological oracles w/ conditioning
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Fixing pathological oracles w/ conditioning
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ldea: estimate training distribution of x conditioned on high values of oracle

Don’t have access to training distribution, but can build a model p(x|6(0)) to approximate it



Conditioning by Adaptive Sampling (CbAS)

Previous formulation: New formulation:
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Conditioning by Adaptive Sampling (CbAS)

Previous formulation:

argmax log E,(x|g) [P (S]x)]

|

a.rggla.x E,xjo®) [P(S]x) log p(x|0)]

1 Anneal and MC

M
6(+1) — argmax Z P(SW |x§t)) log p(x,gt) 10)

o =1

New formulation:
argmin D1 (p(x|s, 9<0>)||p(x|9))

0
argmax E,, 90 [P(S]x) log p(x|0)]
6 /\\7\
Can’t anneal when sampling
dist. doesn’t change!



Conditioning by Adaptive Sampling (CbAS)

Previous formulation: New formulation:
argmin D1 (p(x|s, 9<0>)||p(x|9))

o l _

argmax [, g [P(S]x) log p(x|0)]

I =

0
argmax £, g0 [P(S]x) log p(x|0)] l _
0
o)
1 Anneal and MC argrenaxIEp(xw(t)) [%P(Sm) log p(x|0)

M
6+l — argmax Z P(S® |x§t)) log p(xgt) 10)
o =1

Importance sampling
proposal dist.



Conditioning by Adaptive Sampling (CbAS)

Previous formulation: New formulation:
argmin D ( x|S, 6 x|0 )
argmax 10g ]Ep(x|6) [P(S|X)] g@ KL p( | )||p( | )
0 l —
|
argrenaX]Ep(xw(O)) [P(S‘X) 10gp(X|0)]
argmax £, g0 [P(S]x) log p(x|0)] l _
0
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nneal an argmax B o0 | 2o o) P(ST) log (x/6)
M
g+l — argmaxz P(S(t)|x,§t)) logp(x,gt)|9) l Anneal and MC
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P(SD|x") 1og p(x{”|6)
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Testing is fundamentally different

* We don’t trust our oracle and generally
can’t query the ground truth

 We can’t hold-out a test set of good
sequences
* Near-zero chance of any of these
sequences being found by the method

* We can’t use some canonical test
function as the oracle

* |n our problem it is untrustworthy




Testing strategy

e Simulate a ground truth based on real data

Ground
truth GP

- “Ground truth” is a GP mean function
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Testing strategy

e Simulate a ground truth based on real data

- “Ground truth” is a GP mean function -: ey Ground
s truth GP
* Ground truth vales values are sampled from

the GP for given sequences

e Use these input-output pairs to train oracles. Training
data

Il I 1

@ @ Oracles
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Testing strategy

e Simulate a ground truth based on real data
- “Ground truth” is a GP mean function

* Ground truth vales values are sampled from
the GP for given sequences

e Use these input-output pairs to train oracles

* Coerce training set so these oracles exhibit
pathologies

w
[

Mean Oracle Predictions
w

< 20 percentile

= 20" percentile

3.1 3.2 3.3
Ground Truth Values

1
3.4

1
3.5
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Ground Truth Values

Results
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Model-based optimizations

Use weighted ML updates with weights:
p(x]0)

* CbAS: W

P(S®]|x)

« DbAS:  P(SW|x)
* RWR: %/
* CEM-PI: Ip ey, 03(%)

* FB-VAE: H{f(x)>y(t)}(x) w/ additional

considerations



Ground Truth Values

Results
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Model-based optimizations

Gradient descent on latent spaces

Most Probable Decoding
argmax p(*z)



Ground Truth Values

Results
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Ground Truth Values

Results
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Ground Truth Values

Results

o —_ N w o
1 1 1 1 ]

N
()
]

1 50t
3 80"
= 95%

80" percentile of y samples
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Wrap-up

* Introduced a new model-based optimization method
that is robust to pathological oracles

* Specifically targeted for discrete design problems

* Ongoing work to move beyond proof-of-principle:

* Collaboration with wet-lab to perform end-to-end
validation
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