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Motivating problem: design protein sequences
• Proteins are made up of sequences of amino acids (20 possibilities)
• Huge variety of proteins whose function we would like to improve

Proteins that 
fluoresce 

…. that act as 
drugs

… that fixate 
carbon in the 
atmosphere

… that deliver 
gene-editing 
tools to tissues



How to map sequence to function?

A law of molecular biology:

Sequence Structure

Hughes A, Mort M, Carlisle F, et al B04 Alternative Splicing In Htt Journal of Neurology, Neurosurgery & Psychiatry 2014;85:A10.
http://www.rcsb.org/structure/6FWW
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Function

ex: fluorescence

http://www.rcsb.org/structure/6FWW


Bypassing the structure relationships

Sequence Structure

Hughes A, Mort M, Carlisle F, et al B04 Alternative Splicing In Htt Journal of Neurology, Neurosurgery & Psychiatry 2014;85:A10.
http://www.rcsb.org/structure/6FWW

Function

A law of molecular biology:

High throughput experiments (& ML)

http://www.rcsb.org/structure/6FWW


Can we solve the inverse problem?

Sequence Structure

Hughes A, Mort M, Carlisle F, et al B04 Alternative Splicing In Htt Journal of Neurology, Neurosurgery & Psychiatry 2014;85:A10.
http://www.rcsb.org/structure/6FWW

Function

A law of molecular biology:

Design problem: Given a model, find sequences with desired function

http://www.rcsb.org/structure/6FWW
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⟹ size scales as 20$

Atoms in universe

Grains of sand on 
earth



Why is protein design difficult?
• Huge, rugged search space 
⟹ size scales as 20$

• Discrete search space (no gradients) Atoms in universe

Grains of sand on 
earth



Why is protein design difficult?
• Huge, rugged search space 
⟹ size scales as 20$

• Discrete search space (no gradients)
• Uncertainty in predictor

https://livingthing.danmackinlay.name/gaussian_processes.html69

Atoms in universe

Grains of sand on 
earth
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Idea: replace the standard (hard) objective
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Possible solution: model-based optimization (MBO)

Idea: replace the standard (hard) objective with a potentially easier one

Solution approach is to iterate:
1. Sample from “search model” 𝑝 𝑥 𝜃
2. Evaluate samples on 𝑓 𝑥
3. Adjust 𝜃 so the model favors 

sequences with large function evals 

ü Model can sample broad 
areas of sequence space

ü Does not require 
gradients of 𝑓

ü Can incorporate 
uncertainty 
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Design by Adaptive Sampling (DbAS)
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Our aim is solve the MBO objective:

where
• 𝑝 𝑥 𝜃 is the search model (VAE, HMM…)
• 𝑆 is desired set of property values

à e.g. fluorescence > 𝛼
• 𝑃(𝑆|𝑥) is a stochastic predictive model (“oracle”) 

that maps sequences to property

First attempt at MBO for protein design:
Design by Adaptive Sampling (DbAS)



Design by Adaptive Sampling (cont.)

Two issues:
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Two issues:
1. 𝜃 is in the expectation 

distribution.
2. MC estimates for rare 

events.

maximize a lower bound

anneal a sequence of relaxations:
𝑆0 → 𝑆, where 𝑆0 ⊃ 𝑆034

≥
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Design by Adaptive Sampling (cont.)

Two issues:
1. 𝜃 is in the expectation 

distribution.
2. MC estimates for rare 

events.

maximize a lower bound

≥

Anneal and MC

Assumes oracle is unbiased and 
has good uncertainty estimates
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Fixing pathological oracles w/ conditioning

Idea: estimate training distribution of x conditioned on high values of oracle

Don’t have access to training distribution, but can build a model 𝑝 𝒙 𝜽 7 to approximate it



Conditioning by Adaptive Sampling (CbAS)

≥

Anneal and MC

Previous formulation: New formulation:

𝑝 𝒙 𝜽(𝟎) models the 
training distribution
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Previous formulation: New formulation:

=

Can’t anneal when sampling 
dist. doesn’t change!
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Previous formulation: New formulation:

=

=

Importance sampling 
proposal dist.
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Previous formulation: New formulation:

=

=

Anneal and MC

≥

Anneal and MC

Conditioning by Adaptive Sampling (CbAS)
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Testing is fundamentally different
• We don’t trust our oracle and generally 

can’t query the ground truth
• We can’t hold-out a test set of good 

sequences
• Near-zero chance of any of these 

sequences being found by the method

• We can’t use some canonical test 
function as the oracle 
• In our problem it is untrustworthy
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Testing strategy
• Simulate a ground truth based on real data

à “Ground truth” is a GP mean function
• Ground truth vales values are sampled from 

the GP for given sequences
• Use these input-output pairs to train oracles
• Coerce training set so these oracles exhibit 

pathologies
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Results
Model-based optimizations 

Use weighted ML updates with weights:

• CbAS:      
: 𝑥 𝜃 7

: 𝑥 𝜃(0)
𝑃 𝑆 0 𝑥)

• DbAS: 𝑃 𝑆 0 𝑥)

• RWR:  𝑒< = >

• CEM-PI: 𝕝 @A > BC D (𝑥)

• FB-VAE: 𝕝 = > BC D (𝑥) w/ additional 
considerations



Results
Model-based optimizations

Gradient descent on latent spaces
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Wrap-up

• Introduced a new model-based optimization method 
that is robust to pathological oracles
• Specifically targeted for discrete design problems 
•Ongoing work to move beyond proof-of-principle:
• Collaboration with wet-lab to perform end-to-end 

validation
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