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Sensitivity analysis + plausibility judgments = there 
must be a causal path between cigarette smoking 
and lung cancer.
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These results can then be submitted to expert judgment, to decide whether 
problematic degrees of violation are plausible.
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Can we have a general-purpose, algorithmic framework that 
captures all these canonical cases — and many more?
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…canonical cases are a small subset of all possible sensitivity analyses covered by 
our framework.



Thank you! 

For details, come to our poster session: 

Wed, Jun 12th  
6:30pm—9:00pm 

@ Pacific Ballroom #78 

Or see paper: https://tinyurl.com/y5urlwqs

Contact 
carloscinelli@ucla.edu 
twitter: @analisereal


