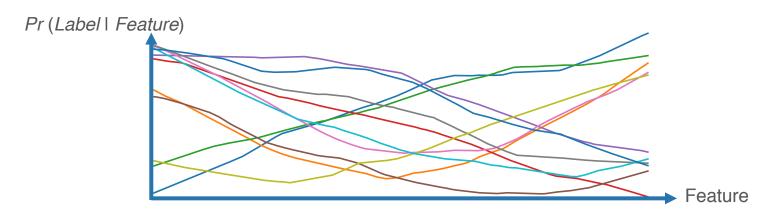


Conditional Independence in Testing Bayesian Networks

DEEP LEARNING

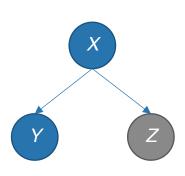
- Neural networks are universal approximators.
- They are data hungry.

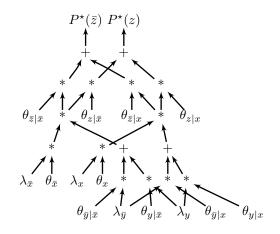


Sampled functions that are represented using a simple neural network.

BAYESIAN NETWORKS

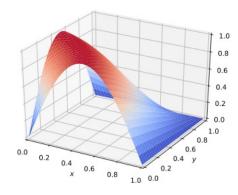
BNs utilize data efficiently using conditional independence assumptions.



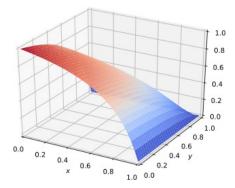


EXPRESSIVENESS IN BAYESIAN NETWORKS

- BNs utilize data efficiently using conditional independence assumptions.
- Marginal queries are not universal approximators.



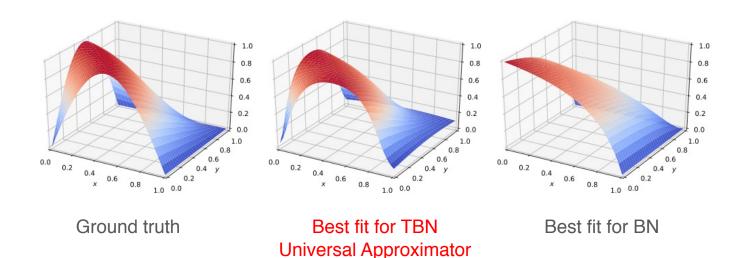
Ground truth



Best fit for BN

TESTING BAYESIAN NETWORK

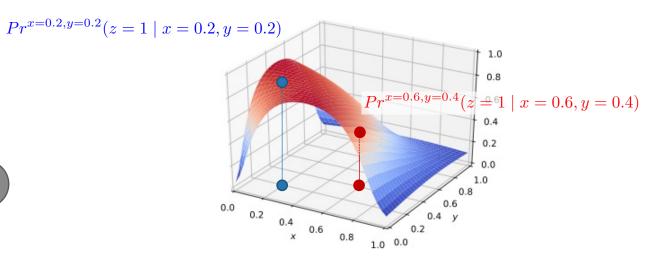
Testing Bayesian networks are universal approximators [Choi, Darwiche(2018)].



Testing Bayesian Network

A SET OF DISTRIBUTIONS

- TBN represents a set of distributions.
 - Different evidence selects different distribution for inference.



Conditional Independence in TBN

Suppose *X* is d-separated from *Y* given *Z*.

In classical Bayesian networks,

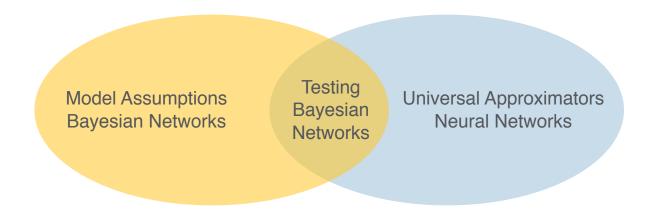
$$Pr(x|yz) = Pr(x|z)$$
.

In testing Bayesian networks,

$$Pr^{yz}(x|yz) = Pr^{z}(x|z)$$

 Pr^{yz} is the joint distribution selected under evidence yz

 Pr^z is the joint distribution selected under evidence z



Thank You

Conditional Independence in Testing Bayesian Networks

