

Conditional Independence in Testing Bayesian Networks

DEEP LEARNING

- Neural networks are universal approximators.
- They are data hungry.

Sampled functions that are represented using a simple neural network.

BAYESIAN NETWORKS

BNs utilize data efficiently using conditional independence assumptions.

EXPRESSIVENESS IN BAYESIAN NETWORKS

- BNs utilize data efficiently using conditional independence assumptions.
- Marginal queries are not universal approximators.

Ground truth

Best fit for BN

TESTING BAYESIAN NETWORK

Testing Bayesian networks are universal approximators [Choi, Darwiche(2018)].

Testing Bayesian Network

A SET OF DISTRIBUTIONS

- TBN represents a set of distributions.
 - Different evidence selects different distribution for inference.

Conditional Independence in TBN

Suppose *X* is d-separated from *Y* given *Z*.

In classical Bayesian networks,

$$Pr(x|yz) = Pr(x|z)$$
.

In testing Bayesian networks,

$$Pr^{yz}(x|yz) = Pr^{z}(x|z)$$

 Pr^{yz} is the joint distribution selected under evidence yz

 Pr^z is the joint distribution selected under evidence z

Thank You

Conditional Independence in Testing Bayesian Networks

