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Introduction

Goal: Estimate the distribution of outcome Y given exposure A
and covariates X from non-experimental data.

Measurement error is common source of bias when using non-
experimental data.
* \We focus on underreporting error.
* E.g. survey data of sensitive variables such as drug use.
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Updated goal: Estimate the distribution of outcome Y given
exposure A and covariates X when exposure observations A are

subject to underreporting errors.

Assumptions:
1. Strict underreporting (A=0= A =0)

2. A is independent of X given A
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Outcome model ... py(Y I A, X)
Exposure model ... ps(A | X)
Error model ......... pA(A1A)
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Outcome model ... py(Y I A, X)
Exposure model ... ps(A | X)
Error model ......... pA(A1A)

X
B—A)—

Maximize the log marginal likelihood:

max Z lOg Z pg(y,- | a, Xi)pf(di | a)p¢(a | xi)
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dentifiability

We prove three separate identifiability conditions:
1. The error distribution is known
2. We have a second error-prone exposure observation
3. Under assumptions about the form of the exposure
distribution (see paper/poster for details)

In particular:
If X is not independent of A and p(A | X) is a logit, probit, or

cloglog regression model, then p(Y, A | X) is identifiable.



Maternal drug use and childhood obesity

Average causal effect
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Come see poster #/795



