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Two tasks:

1. Identify time-varying 
causal relations

2. Forecast the values of 
variables of interest

• Forecasting benefits from causal knowledge

‣ Each causal module changes independently

‣ Causal knowledge makes the forecasts more interpretable
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Time-varying causal model:
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Causal Model, Identifiability, and Estimation

• Goal: Find time-varying causal relations & make prediction

• Causal relations change over time
• Model: causal coefficients modeled by autoregressive 

models

• Identifiability: The causal model identifiable if the 
underlying causal structure is acyclic

• Model Estimation: A specific nonlinear state-space model

• Estimated by Stochastic approximation EM with 
Conditional particle filter



Forecasting with time-varying causal model 

‣ Treat forecasting as a Bayesian inference problem in the 
causal model

‣ Metropolis-Hastings to forecast
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Causal discovery:

Forecasting:

Ours: highest F1 score!

Ours: lowest RMSE!
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Macroeconomics data

(quarterly data, 1965-2017, USA)

RMSE of the forecasts on inflation (2007 - 2017).
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Conclusion 

‣ A unified framework for causal discovery and forecasting 

‣ Establish the identifiability results, even when data is 
conditional Gaussian

Future work

‣ Improve the scalability 

‣ Nonlinear causal relationships, partially observable processes, 
and causal models with instantaneous cycles…

 8

Poster #73


