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- Forecasting benefits from causal knowledge

» Each causal module changes independently

» Causal knowledge makes the forecasts more interpretable




Time-varying causal model:
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Causal Model, Identifiability, and Estimation

» Goal: Find time-varying causal relations & make prediction

» Causal relations change over time
» Model: causal coefhicients modeled by autoregressive
models

+ Identifiability: The causal model identifiable if the
underlying causal structure is acyclic

+ Model Estimation: A specific nonlinear state-space model

» Estimated by Stochastic approximation EM with
Conditional particle filter



Forecasting with time-varying causal model

» Ireat forecasting as a Bayesian inference problem in the
causal model
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» Metropolis-Hastings to forecast Y7,
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Causal discovery:

Ours: highest F1 score!

Forecasting:

Ours: lowest RMSE!
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Macroeconomics data

(quarterly data, 1965-2017, USA) D Inflation
cDP ___./ éconczr:ic Unemgloyment
rnw
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Economic ’\W\/\V""'
growth | | | Methods RMSE Methods RMSE
LJM\/\/\/\ Ours 0.32 Lasso 0.38
Unemployment x ‘ Kalman filtering  0.42 Window Lasso  0.37
SSM (CPF) 043 GP 0.37

RMSE of the forecasts on inflation (2007 - 2017).
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Conclusion

» A unified framework for causal discovery and forecasting

» Establish the identifiability results, even when data is
conditional Gaussian

Future work

» Improve the scalability

» Nonlinear causal relationships, partially observable processes,
and causal models with instantaneous cycles...



