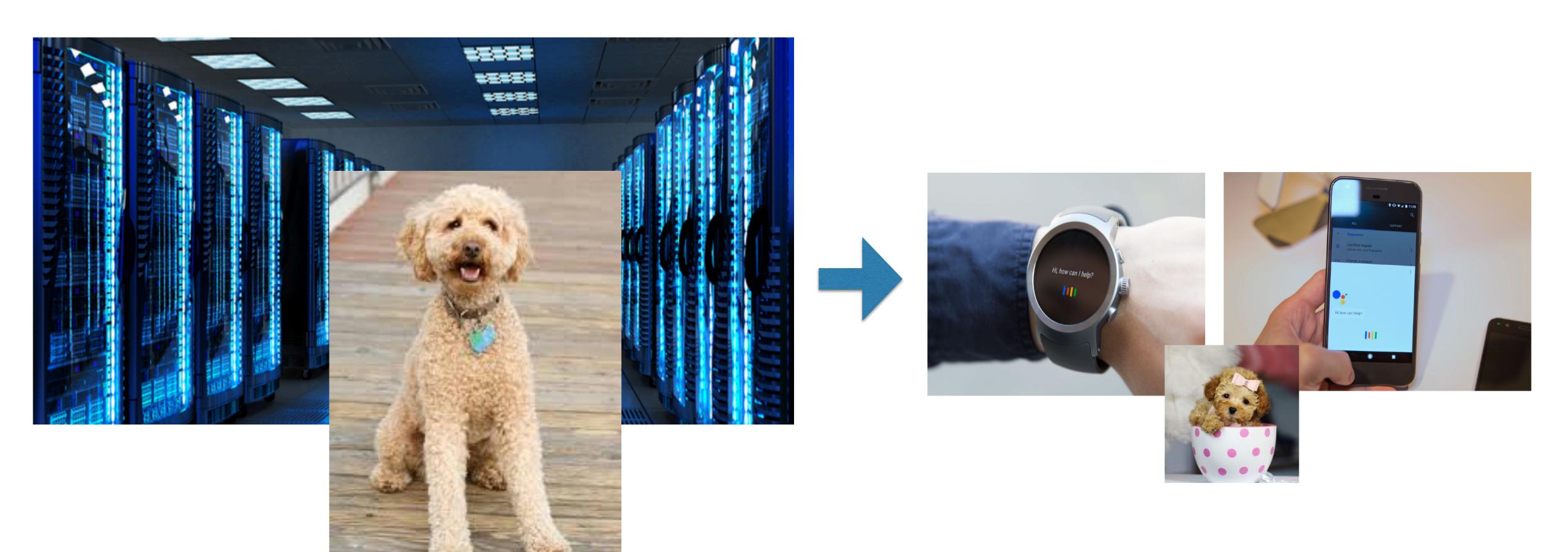
Efficient On-Device Models using Neural Projections

Sujith Ravi

@ravisujith
http://www.sravi.org

Motivation



big Neural Networks running on cloud

tiny Neural Networks running on device

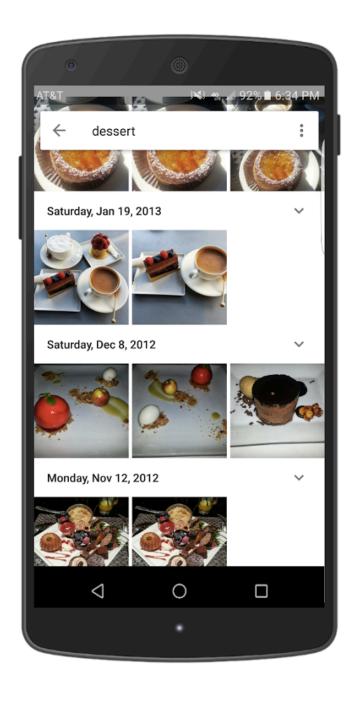
User Privacy Limited Connectivity

Efficient Computing

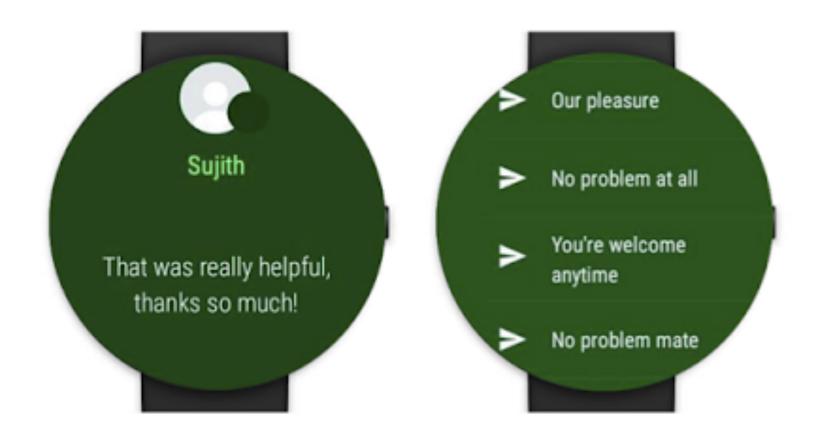
Consistent Experience

On-Device ML in Practice

Image Recognition on your mobile phone



Smart Reply on your Android watch



"Custom On-Device ML Models with Learn2Compress", *Sujith Ravi* "On-Device Conversation Modeling with TensorFlow Lite", *Sujith Ravi* "On-Device Machine Intelligence", *Sujith Ravi*

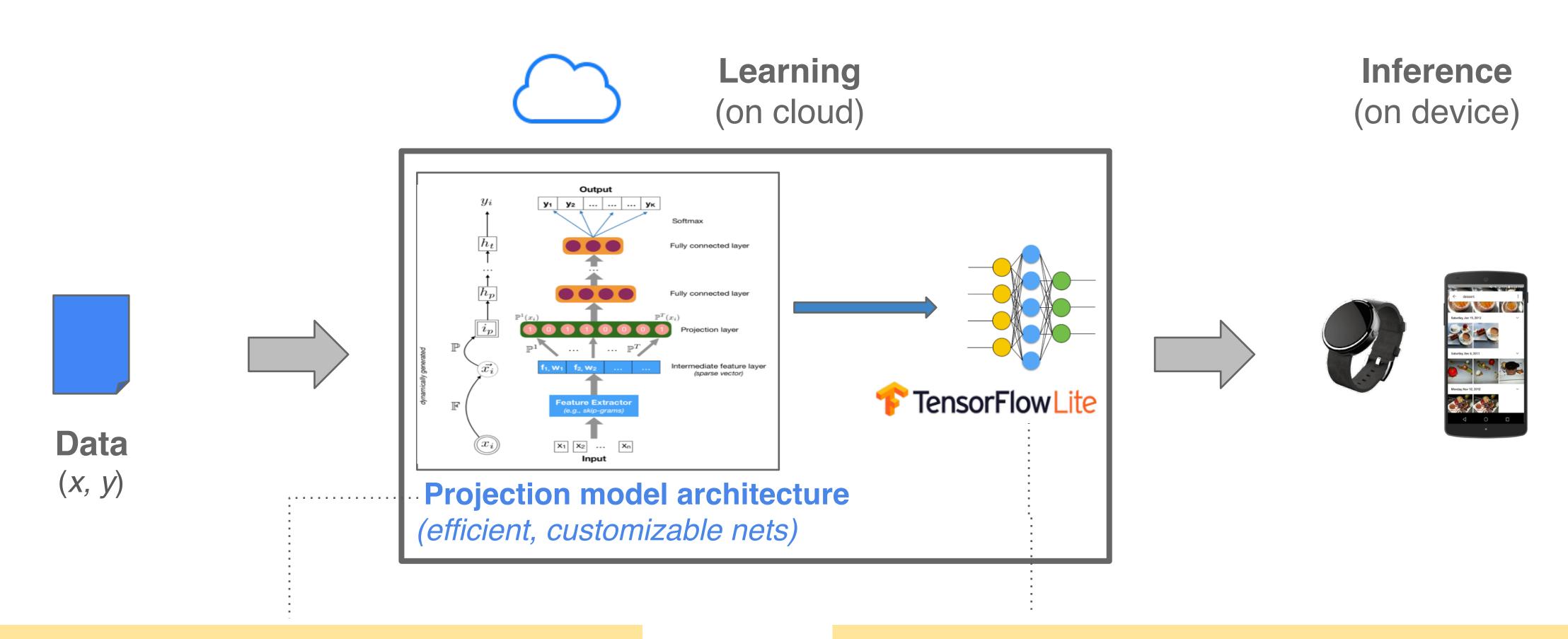
Challenges for Running ML on Tiny Devices

- → Hardware constraints computation, memory, energy-efficiency
- → Robust quality difficult to achieve with small models
- → Complex model architectures for inference
- → Inference challenging structured prediction, high dimensionality, large output spaces
- Previous work, model compression
 - → techniques like dictionary encoding, feature hashing, quantization, ...
 - → performance degrades with dimensionality, vocabulary size & task complexity

Can We Do Better?

- Build on-device neural networks that
 - → are small in size
 - → are very efficient
 - → can reach (near) state-of-the-art performance

Learn Efficient Neural Nets for On-device ML



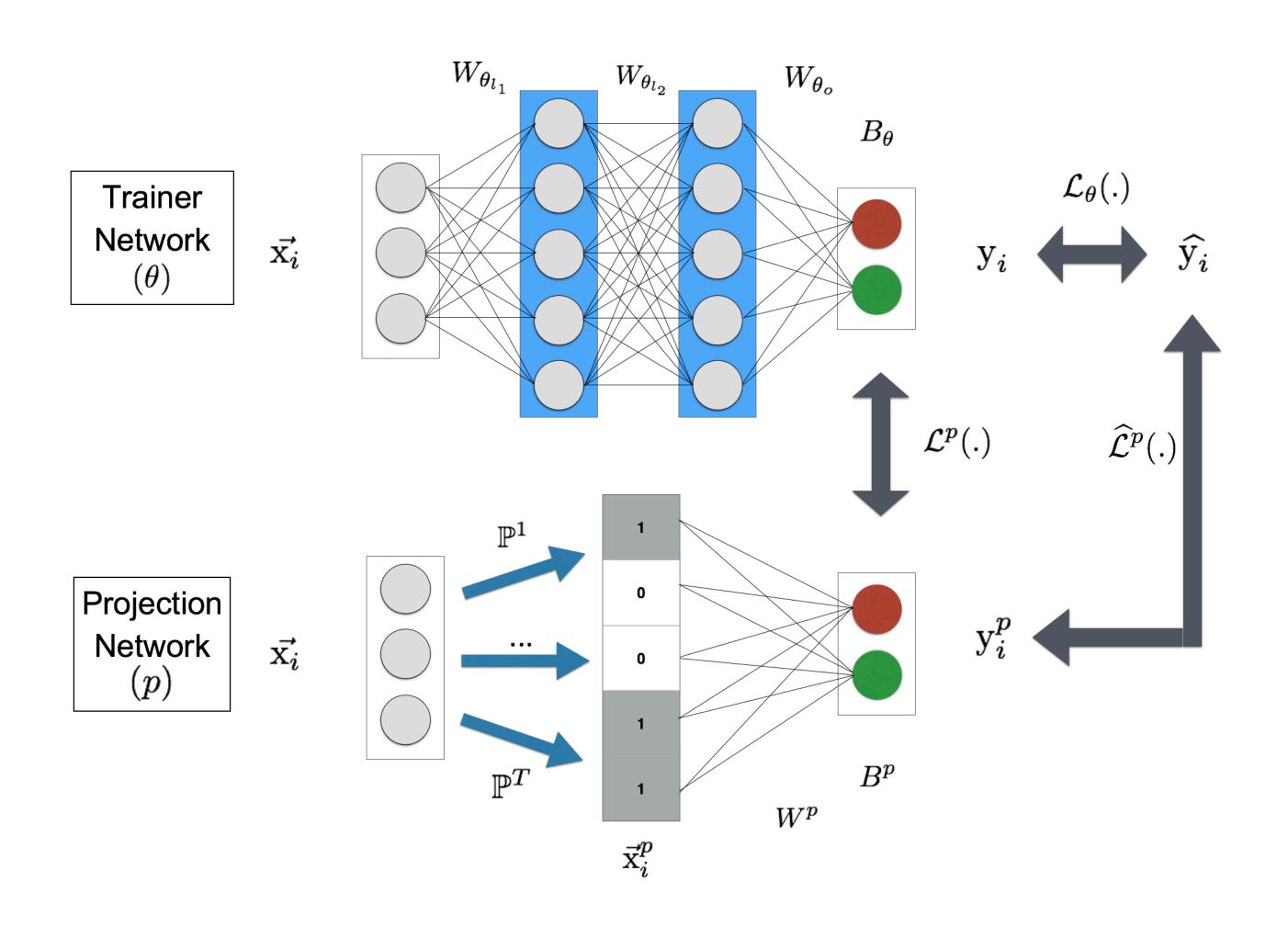
Projection Neural Network

(our work) Efficient, Generalizable Deep Networks using Neural Projections

Optimized NN model, ready-to-use on device

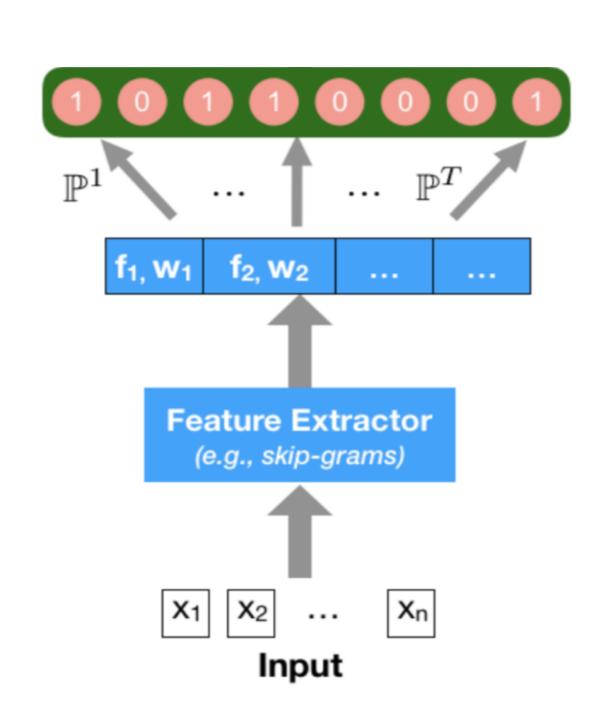
- Small Size → compact nets, multi-sized
- Fast → low latency
- Fully supported inference → TF / TFLite / custom

Learn Efficient On-Device Models using Neural Projections



Projection Neural Networks

Dynamically Generated



Projection layer

Intermediate feature layer (sparse or dense vector)

Efficient Representations via Projections

• Transform inputs using T projection functions

$$\mathbb{P}^1, ..., \mathbb{P}^T$$

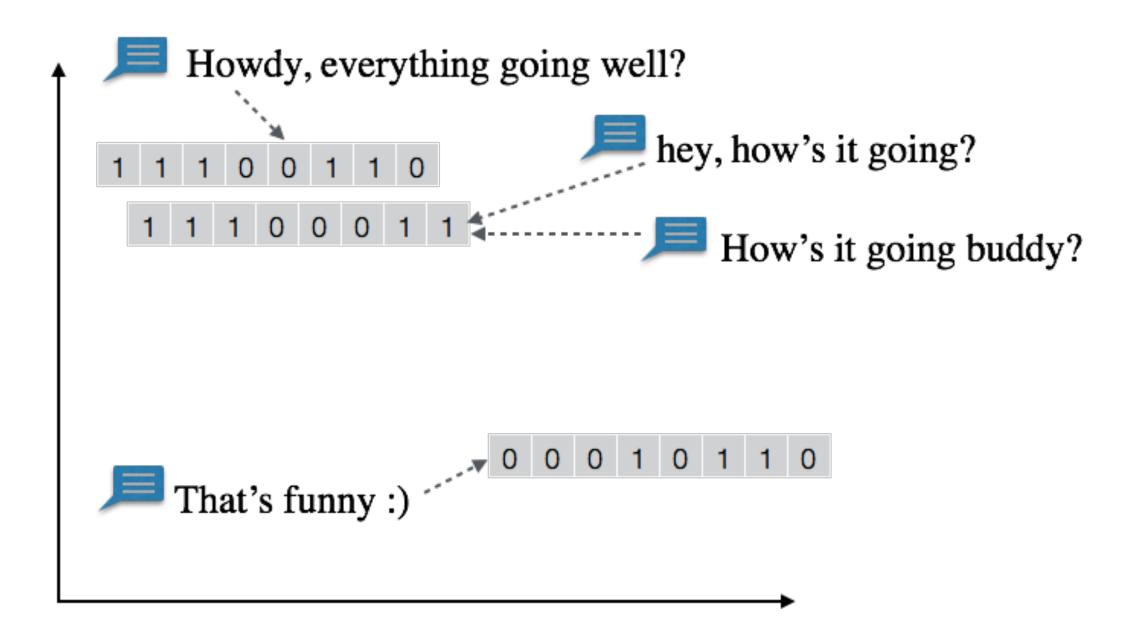
$$\vec{x}_i^p = \mathbb{P}^1(\vec{x}_i), ..., \mathbb{P}^T(\vec{x}_i)$$

$$_{\vec{x}_i}$$

- Projection transformations (matrix) pre-computed using parameterized functions
 - Compute projections efficiently using a modified version of Locality Sensitive Hashing (LSH)

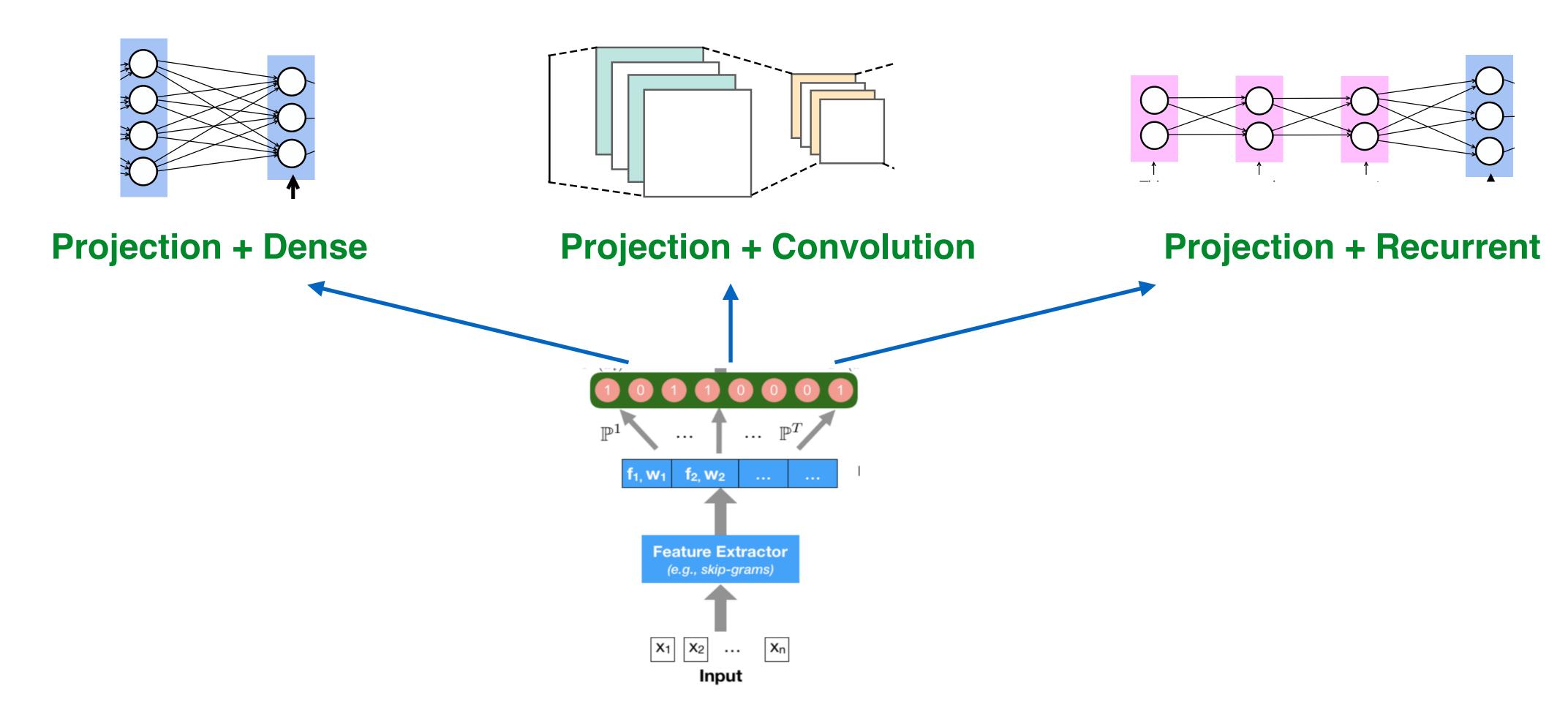
Locality Sensitive ProjectionNets

- Use randomized projections (repeated binary hashing) as projection operations
 - Similar inputs or intermediate network layers are grouped together and projected to nearby projection vectors
 - → Projections generate compact bit (0/1) vector representations

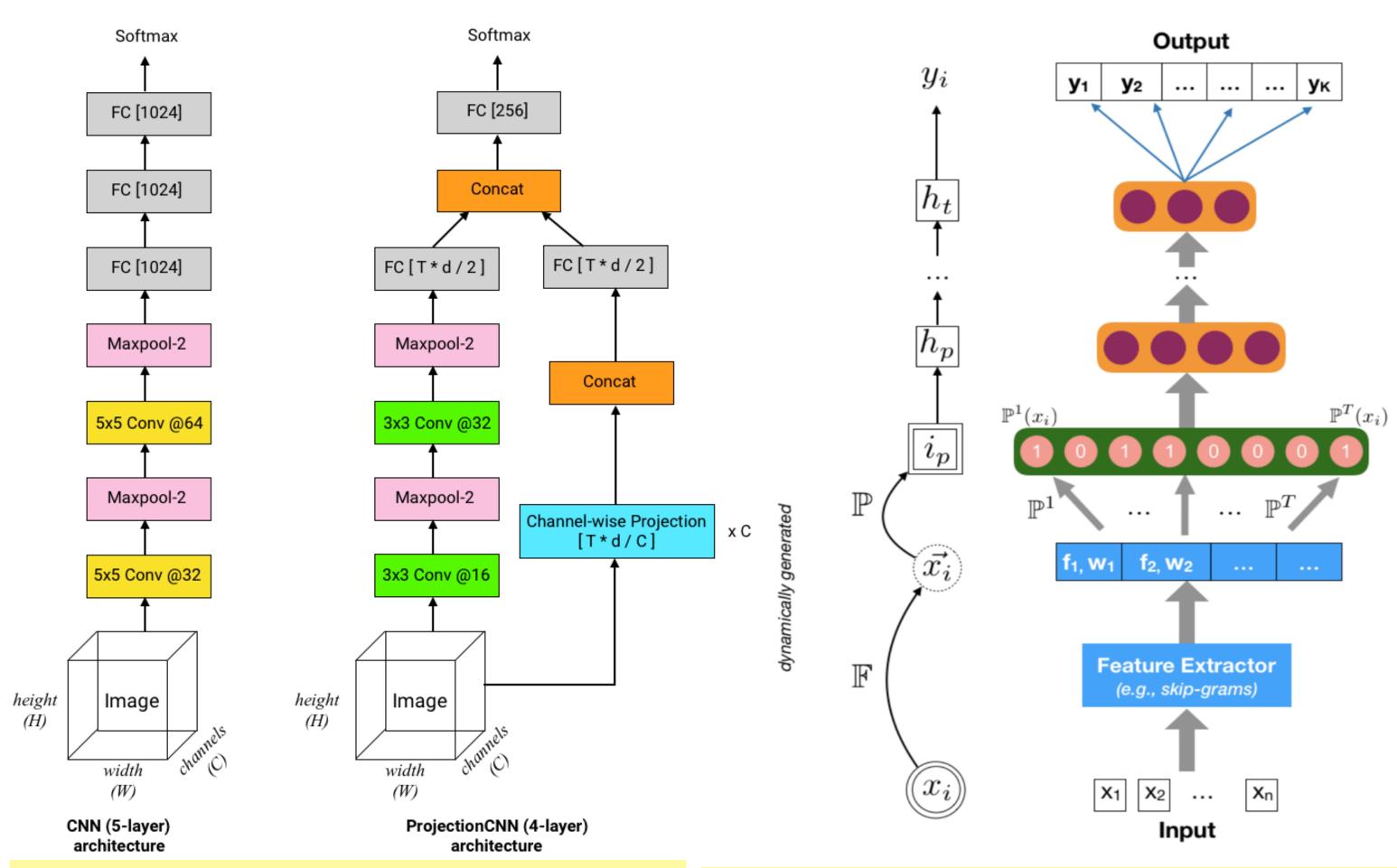


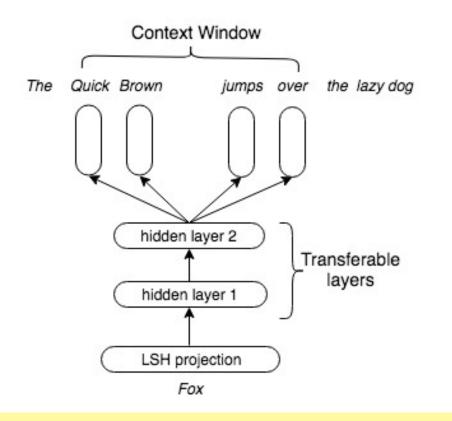
Generalizable, Projection Neural Networks

 Stack projections, combine with other operations & non-linearities to create a family of efficient, projection deep networks



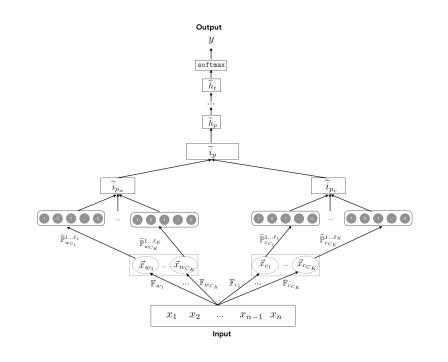
Family of Efficient Projection Neural Networks





Transferable Projection Networks (Sankar Ravi & Kozareva

(Sankar, Ravi & Kozareva, NAACL 2019)



ProjectionCNN

(Ravi, ICML 2019)

ProjectionNet

(Ravi, 2017) arxiv/abs/1708.00630

SGNN: Self-Governing Neural Networks (Ravi & Kozareva, EMNLP 2018)

SGNN++

Hierarchical, Partitioned Projections (Ravi & Kozareva, ACL 2019)

+... upcoming

Sujith Ravi

ProjectionNets, ProjectionCNNs for Vision Tasks

Image classification results (precision@1)

Model		Compression Ratio (wrt baseline)	MNIST	Fashion MNIST	CIFAR-10
NN (3-layer)	(Baseline: feed-forward)	1	98.9	89.3	
CNN (5-layer)	(Baseline: jeeu-jorwara) (Baseline: convolutional) (Figure 2, Left)	0.52^*	99.6	93.1	83.7
Random Edge Removal	(Ciresan et al., 2011)	8	97.8	75.1	03.7
•				_	_
Low Rank Decomposition	(Denil et al., 2013)	8	98.1	_	_
Compressed NN (3-layer)	(Chen et al., 2015)	8	98.3	_	_
Compressed NN (5-layer)	(Chen et al., 2015)	8	98.7	_	_
Dark Knowledge	(Hinton et al., 2015; Ba & Caruana, 2014)	-	98.3	_	-
HashNet (best)	(Chen et al., 2015)	8	98.6	-	-
NASNet-A	(7 cells, 400k steps) (Zoph et al., 2018)	-	_	_	90.5
ProjectionNet	(our approach) Joint ($trainer = NN$)				
	[T=8,d=10]	3453	70.6		
	[T=10,d=12]	2312	76.9		
	[T=60,d=10]	466	91.1		
	[T=60,d=12]	388	92.3		
	[T=60,d=10] + FC[128]	36	96.3		
	[T=60,d=12] + FC[256]	15	96.9		
	[T=70,d=12] + FC[256]	13	97.1	86.6	
ProjectionCNN (4-layer)	(our approach) (Figure 2, Right)		00.4	00.7	70.4
	Joint $(trainer = CNN)$	8	99.4	92.7	78.4
ProjectionCNN (6-layer)	(our approach)				
	$(Conv3-64, Conv3-128, Conv3-256, \mathbb{P} [T=60, d=7], FC [128 x 256])$				
	Self (trainer = None)	\parallel 4			82.3
	Joint (trainer = NASNet)	4			84.7

• Efficient wrt compute/memory while maintaining high quality

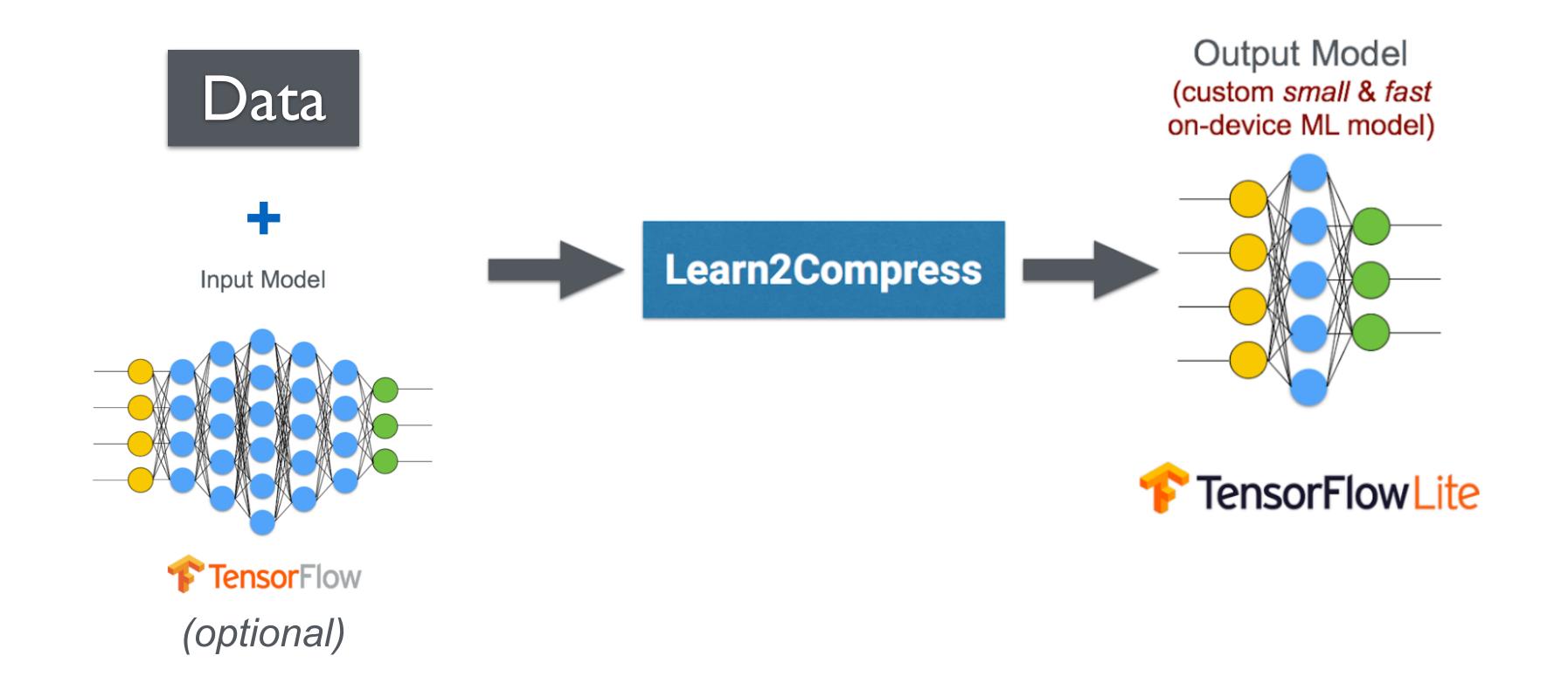
ProjectionNets for Language Tasks

Text classification results (precision@1)

Model	Compression (wrt RNN)	Smart Reply Intent	ATIS
Random (Kannan et al., 2016)	_	5.2	_
Frequency (Kannan et al., 2016)	_	9.2	72.2
LSTM (Kannan et al., 2016)	1	96.8	_
Attention RNN	1	_	91.1
(Liu & Lane, 2016)			
ProjectionNet (our approach)	>10	97.7	91.3
$[T=70,d=14] \rightarrow FC [256 \times 128]$			

- Efficient wrt compute/memory while maintaining high quality
 - → On ATIS, ProjectionNet (quantized) achieves 91.0% with tiny footprint (285KB)
- Achieves SoTA for NLP tasks

Learn2Compress: Build your own On-Device Models



"Custom On-Device ML Models with Learn2Compress"

Thank You!

http://www.sravi.org @ravisujith

Paper Efficient On-Device Models using Neural Projections http://proceedings.mlr.press/v97/ravi19a.html

Check out our Workshop Fri, Jun 14 (Room 203)

Joint Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR)