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On-Device ML in Practice 

Smart Reply
on your Android watch

“On-Device Conversation Modeling with TensorFlow Lite”, Sujith Ravi

Image Recognition
on your mobile phone

“On-Device Machine Intelligence”, Sujith Ravi

“Custom On-Device ML Models with Learn2Compress”, Sujith RaviBlog
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Challenges for Running ML on Tiny Devices

➡ Hardware constraints — computation, memory, energy-efficiency

➡ Robust quality — difficult to achieve with small models

➡ Complex model architectures for inference

➡ Inference challenging — structured prediction, high dimensionality, large output 
spaces
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• Previous work, model compression
➡ techniques like dictionary encoding, feature hashing, quantization, … 
➡ performance degrades with dimensionality, vocabulary size & task complexity



● Build on-device neural networks that 
 

Can We Do Better?

➡ are small in size 
➡ are very efficient 
➡ can reach (near) state-of-the-art performance
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Learn Efficient Neural Nets for On-device ML 

Data
(x, y)  Projection model architecture

(efficient, customizable nets)

Learning 
(on cloud)

Inference 
(on device)

! Small Size → compact nets, multi-sized
! Fast  → low latency
! Fully supported inference →  TF / TFLite / custom

Optimized NN model, ready-to-use on device Projection Neural Network

Efficient, Generalizable Deep Networks 
using Neural Projections

(our work)
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[21] offers a survey of binary hashing literature that is relevant to the projection functions used in our
work. The coupled network training architecture proposed in this paper (described in Section 3.1)
also resembles, conceptually at a high level, generative adversarial networks (GANs) [22] which are
used in unsupervised learning settings to reconstruct or synthesize data such photorealistic images.

3 Neural Projection Networks

In this section, we present Neural Projection Networks, a joint optimization framework for training
neural networks with reduced model sizes. We first introduce the objective function using a coupled
full+projection network architecture and then describe the projection mechanism used in our work,
namely locality sensitive hashing (LSH) and how it is applied here.

3.1 ProjectionNets

Neural networks are a class of non-linear models that learn a mapping from inputs ~xi to outputs yi,
where ~xi represents an input feature vector or sequence (in the case of recursive neural networks) and
yi is an output category for classification tasks or a predicted sequence. Typically, these networks
consist of multiple layers of hidden units or neurons with connections between a pair of layers. For
example, in a fully-connected feed-forward neural network, the number of weighted connections or
network parameters that are trained is O(n2), where n is the number of hidden units per layer.

Figure 1: Illustration of a Neural Projection Network trained using feed-forward NN.
Notation: ~xi represents the input feature vector, byi the ground-truth, yi the prediction from the
full network and y

p
i the prediction from projection network. P1...PT denote the T projection func-

tions that transform the input ~xi into d-bit vectors, one per function. W✓, B✓ and W
p, Bp rep-

resent the weights/bias parameters for the trainer network and projection network, respectively.
The training objective optimizes a combination of NN loss L✓(.) and projection loss L

p(.) that
biases the projection network to mimic and learn from the full trainer network. The objective also
incorporates a labeled loss bLp for the projection network.

We propose a new objective and joint optimization framework for training compact on-device mod-
els for inference. The architecture uses a trainer network coupled with a projection network and
trains them jointly. Figure 1 illustrates the Neural Projection Network architecture using a feed-
forward NN for the trainer network. The coupled networks are jointly trained to optimize a com-
bined loss function:

L(✓, p) = �1 · L✓(.) + �2 · L
p(.) + �3 ·

bLp(.) (1)
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Efficient Representations via Projections

where L✓(.), Lp(.) and bLp(.) are the loss functions corresponding to the two networks as defined
below.

L✓(.) =
X

i2N

D(h✓(~xi), byi)

L
p(.) =

X

i2N

D(hp(~xi), h✓(~xi))

bLp(.) =
X

i2N

D(hp(~xi), byi) (2)

N indicates the number of training instances in the dataset, ~xi represents the input feature vector in a
feed-forward network or sequence input in an RNN, and byi refers to the ground-truth output classes
used for network training. h✓(~xi) represents a parameterized representation of the hidden units in
the trainer network that transforms ~xi to an output prediction yi. Similarly, hp(~xi) represents the
projection network parameters that transforms the input to corresponding predictions ypi . We apply
softmax activation at the last layer of both networks to compute the predictions yi and y

p
i .

D denotes a distance function that measures the prediction error used in the loss functions. This
is decomposed into three parts—trainer prediction error, projection simulation error and projection
prediction error. Reducing the first leads to a better trainer network and decreasing the latter in
turn learns a better projection network that is simpler but with approximately equivalent predictive
capacity. In practice, we use cross-entropy for D(.) in all our experiments. For the projection
L
p in Equation 2, we follow a distillation approach [19] to optimize D(.) since it has been shown

to yield better generalization ability than a model trained on just the labels byi. �1, �2 and �3 are
hyperparameters that affect the trade-off between these different types of errors. These are tuned on a
small heldout development set and in our experiments, we set them to �1 = 1.0,�2 = 0.1,�3 = 1.0.

Trainer Network (✓). The trainer model is a full neural network (feed-forward, RNN or CNN)
whose choice is flexible and depends on the task. Figure 1 shows a trainer using feed-forward
network but this can be swapped with LSTM RNNs (as we show later in Section 4.3) or other deep
neural networks. For the network shown in the figure, the activations for h✓(.) in layer lk+1 is
computed as follows:

A✓lk+1
= �(W✓lk+1

·A✓lk
+B✓lk+1

) (3)

where � is the ReLU activation function [23] applied at each layer except the last and A indicates
the computed activation values for hidden units.
The number of weights/bias parameters W✓, B✓ in this network can be arbitrarily large since this
will only be used during the training stage which can be effectively done using high-performance
distribtuted computing with CPUs or GPUs.

Projection Network (p). The projection model is a simple network that encodes a set of efficient-
to-compute operations which will be performed directly on device for inference. The model itself
defines a set of efficient “projection” functions P(~xi) that project each input instance ~xi to a different
space ⌦P and then performs learning in this space to map it to corresponding outputs y

p
i . We use

a simplified projection network with few operations as illustrated in Figure 1. The inputs ~xi are
transformed using a series of T projection functions P1

, ...,PT , which is then followed by a single
layer of activations.

~x
p
i = P1(~xi), ...,PT (~xi) (4)

y
p
i = softmax(W p

· ~x
p
i +B

p) (5)

The projection transformations use pre-computed parameterized functions, i.e., they are not trained
during the learning process, and their outputs are concatenated to form the hidden units for subse-
quent operations. During training, the simpler projection network learns to choose and apply specific
projection operations Pj (via activations) that are more predictive for a given task. It is possible to
stack additional layers connected to the bit-layer in this network to achieve non-linear combinations
of projections.

The projection model is jointly trained with the trainer and learns to mimic predictions made by
the full trainer network which has far more parameters and hence more predictive capacity. Once
learning is completed, the transform functions P(.) and corresponding trained weights W

p, Bp

from the projection network are extracted to create a lightweight model that is pushed to device. At
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• Transform inputs using T projection functions 

[21] offers a survey of binary hashing literature that is relevant to the projection functions used in our
work. The coupled network training architecture proposed in this paper (described in Section 3.1)
also resembles, conceptually at a high level, generative adversarial networks (GANs) [22] which are
used in unsupervised learning settings to reconstruct or synthesize data such photorealistic images.

3 Neural Projection Networks

In this section, we present Neural Projection Networks, a joint optimization framework for training
neural networks with reduced model sizes. We first introduce the objective function using a coupled
full+projection network architecture and then describe the projection mechanism used in our work,
namely locality sensitive hashing (LSH) and how it is applied here.

3.1 ProjectionNets

Neural networks are a class of non-linear models that learn a mapping from inputs ~xi to outputs yi,
where ~xi represents an input feature vector or sequence (in the case of recursive neural networks) and
yi is an output category for classification tasks or a predicted sequence. Typically, these networks
consist of multiple layers of hidden units or neurons with connections between a pair of layers. For
example, in a fully-connected feed-forward neural network, the number of weighted connections or
network parameters that are trained is O(n2), where n is the number of hidden units per layer.

Figure 1: Illustration of a Neural Projection Network trained using feed-forward NN.
Notation: ~xi represents the input feature vector, byi the ground-truth, yi the prediction from the
full network and y

p
i the prediction from projection network. P1...PT denote the T projection func-

tions that transform the input ~xi into d-bit vectors, one per function. W✓, B✓ and W
p, Bp rep-

resent the weights/bias parameters for the trainer network and projection network, respectively.
The training objective optimizes a combination of NN loss L✓(.) and projection loss L

p(.) that
biases the projection network to mimic and learn from the full trainer network. The objective also
incorporates a labeled loss bLp for the projection network.

We propose a new objective and joint optimization framework for training compact on-device mod-
els for inference. The architecture uses a trainer network coupled with a projection network and
trains them jointly. Figure 1 illustrates the Neural Projection Network architecture using a feed-
forward NN for the trainer network. The coupled networks are jointly trained to optimize a com-
bined loss function:

L(✓, p) = �1 · L✓(.) + �2 · L
p(.) + �3 ·

bLp(.) (1)

3

• Projection transformations (matrix) pre-computed using parameterized functions

➡ Compute projections efficiently using a modified version of Locality Sensitive 
Hashing (LSH)
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Locality Sensitive ProjectionNets

• Use randomized projections (repeated binary hashing) as projection operations

➡ Similar inputs or intermediate network layers are grouped together and projected 
to nearby projection vectors

➡ Projections generate compact bit (0/1) vector representations
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Generalizable, Projection Neural Networks
! Stack projections, combine with other operations & non-linearities to create 

a family of efficient, projection deep networks
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Figure 1: A: An example of a graph and feature inputs. In this case, there are two labeled nodes (xi , x j ) and one unlabeled
node (xk ), and two edges. The feature vectors, one for each node, are used as neural network inputs. B, C and D: Illustration
of Neural Graph Machine for feed-forward, convolution and recurrent networks respectively: the training �ow ensures the
neural net to make accurate node-level predictions and biases the hidden representations/embeddings of neighbouring nodes
to be similar. In this example, we force hi and hj to be similar as there is an edge connecting xi and x j nodes. E: Illustration of
how we can construct inputs to the neural network using the adjacency matrix. In this example, we have three nodes and two
edges. The feature vector created for each node (shown on the right) has 1’s at its index and indices of nodes that it’s adjacent to.

itself. We show in �gure 1 and in experiments that the neighbour-
hood information such as rows in the adjacency matrix are simple
to construct, yet powerful inputs to the network. These features
can also be combined with existing features.

When the number of graph nodes is high, this construction can
have a high complexity and result in a large number of input fea-
tures. This can be avoided by several ways: (i) clustering the nodes
and using the cluster assignments and similarities, (ii) learning an
embedding function of nodes [14], or (iii) sampling the neighbour-
hood/context [19]. In practice, we observe that the input space can
be bounded by a constant, even for massive graphs, with e�cient
scalable methods like unsupervised propagation (i.e., propagating
node identity labels across the graph and selecting ones with high-
est support as input features to neural graph machines).

3.3 Optimization
The proposed objective function in eq. (3) has several summations
over the labeled points and edges, and can be equivalently written
as follows,

CNGM (� ) =
X

(u,� )2ELL

[�1wu�d (h� (xu ),h� (x� )) + cu� ]

+
X

(u,� )2ELU

[�2wu�d (h� (xu ),h� (x� )) + cu ]

+
X

(u,� )2EUU

�3wu�d (h� (xu ),h� (x� ), (4)

where

cu� =
1
|u |

c (�� (xu ),�u ) +
1
|� |

c (�� (x� ),�� ); cu =
1
|u |

c (�� (xu ),�u ),

|u | and |� | are the number of edges incident to vertices u and � , re-
spectively. The objective in its new form enables stochastic training
to be deployed by sampling edges. In particular, in each training
iteration, we use a minibatch of edges and obtain the stochastic
gradients of the objective. To further reduce noise and speedup
learning, we sample edges within a neighbourhood region, that is
to make sure some sampled edges have shared end nodes.

3.4 Complexity
The complexity of each epoch in training using eq. (4) is O (M )
where M = |E | is the number of edges in the graph. In the case
where there is a large number of unlabeled-unlabeled edges, they
potentially do not help learning and could be ignored, leading to
a lower complexity. One strategy to include them is self-training,
that is to grow seeds or labeled nodes as we train the networks.
We experimentally demonstrate this technique in section 4.4. Pre-
dictions at inference time can be made at the same cost as that of
vanilla neural networks.

4 EXPERIMENTS
In this section, we provide several experiments showing the e�cacy
of the proposed training objective on a wide range of tasks, datasets
and network architectures. All the experiments are done using a
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Family of Efficient Projection Neural Networks

Efficient On-Device Models using Neural Projections

pre-processing heuristics employed to restrict input sizes in
standard neural networks for feasible training. The binary
representation is significant since this results in a signifi-
cantly compact representation for the projection network
parameters that in turn reduces the model size considerably
compared to the trainer network.

Note that other techniques like quantization or weight shar-
ing (Courbariaux et al., 2014) can be stacked on top of this
method to provide small further gains in terms of memory
reduction as we show in Section 3.2.

Projection Parameters. In practice, we employ T differ-
ent projection functions Pj=1...T as shown in Figure 1, each
resulting in a d-bit vector that is concatenated to form the
projected activation units ~xp

i in Equation 4. T and d vary de-
pending on the projection network parameter configuration
specified for P and can be tuned to trade-off between predic-
tion quality and model size. Note that the choice of whether
to use a single projection matrix of size T · d or T separate
matrices of d columns depend on the type of projection
employed (dense or sparse), described in Section 2.4.

2.3. ProjectionCNN and Deeper Projection Networks

Figure 2. Model architectures for image classification. Left: Base-
line CNN (5-layer) model. Right: ProjectionCNN (4-layer) model
using channel-wise projections. Depth of the network and projec-
tion parameters (T = 64, d = 8) can be configured depending on
task. Each Conv, Projection and FC layer is followed by batchnorm
and ReLU in both models.

For complex tasks, we design deeper projection network
variants by combining projections stacked with other non-
linear operations. We also extend the proposed framework to
handle more than one type of trainer or projection network
and even simultaneously train several models at multiple

resolutions using this architecture. Figure 2 illustrates our
design for a ProjectionCNN neural network architecture
for image classification and compares it to a standard con-
volution model. The new model is constructed by applying
channel-wise projections combined with simpler, faster con-
volutions (3x3 with fewer filters) and other operations to
yield compact yet powerful projection networks.

2.4. Training and Inference

We use the compact bit units to represent the projection
network as described earlier. During training, this network
learns to move the gradients for points that are nearby to
each other in the projected bit space ⌦P in the same direction.
The direction and magnitude of the gradient is determined
by the trainer network which has access to a larger set of pa-
rameters and more complex architecture. The two networks
are trained jointly using backpropagation. Despite the joint
optimization objective, training can progress efficiently with
stochastic gradient descent with distributed computing on
high-performance CPUs or GPUs.

Once trained, the two networks are de-coupled and serve
different purposes. The trainer model can be deployed
anywhere a standard neural network is used. The simpler
projection network model weights along with transform
functions P(.) are extracted to create a lightweight model
that is pushed to device. This model is used directly “on”
device at inference time by applying the same operations in
Equations 4, 5 (details described in Sections 2.1, 2.2) to a
new input ~xi and generate predictions ypi .

Complexity. The time complexity for projection during
inference is O(n ·T ·d), where n is the observed feature size
(not overall vocabulary size) which is linear in input size,
d is the number of LSH bits specified for each projection
vector Pk, and T is the number of projection functions used
in P. The model size (in terms of number of parameters)
and memory storage required for the projection inference
step is O(T · d ·C), where C is the number of outputs (e.g.,
classes) or hidden units in the next layer in a multi-layer
projection network.

As an alternative to the bit vector representation ⌦P, the
projection matrix P can instead be used to generate a sparse
representation of hidden units in the projection network.
Each d-bit block can be encoded as an integer instead of a
bit vector. This results in a larger parameter space overall
O(T ·2d) but can still be beneficial to applications where the
actual number of learned parameters is tiny and inference
can be performed via efficient sparse lookup operations.

3. Experiments

In this section we demonstrate the effectiveness of the pro-
posed approach with several experiments on different bench-
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Figure 1: OPA Model Architecture: On-Device Joint Structured & Context Partitioned Projection Neural Network

ePj(xi) = projection(~xi, ePj) (2)
eip = eP1...T (xi) (3)

= [ eP1(xi), ..., ePT (xi) ]

where ePj(xi) refers to output from the j-th pro-
jection function. This is followed by a stack of
additional layers and non-linear activation to cre-
ate deep, non-linear combinations of projections
that permit the network to learn complex map-
pings from inputs xi to outputs yi.

ehp = �(Wp ·eip + bp) (4)
eht = �(Wt · eht�1 + bt) (5)
yi = softmax(Wo · ehk + bo) (6)

where ehp is computed directly from the projec-
tion output, ht is applied at intermediate layers
of the network with depth k followed by a final
softmax activation layer at the top. In an L-
layer OPA , ht, where t = p, p + 1, ..., p + L � 1
refers to the L subsequent layers after the pro-
jection layer. Wp,Wt,Wo and bp, bt, bo represent
trainable weights and biases respectively. The pro-
jection transformations use pre-computed param-
eterized functions, i.e., they are not trained dur-
ing learning, and their outputs are concatenated to
form the hidden units for subsequent operations.

2.3 Joint Structured Projection Network

Unlike prior work that employs projections (Ravi
and Kozareva, 2018), we make an important obser-
vation that input instances xi are drawn from nat-
ural language rather than random continuous vec-

tors and thereby encode some inherent structure—
for example, sentences contain sequence of words,
and words contain characters. This motivates us
to leverage the underlying linguistic structure in
the input and build a hierarchical projection model
from the raw text in a progressive fashion rather
than taking a one-shot projection approach. We
define a joint structured projection model (OPA
). The model jointly combines word and charac-
ter level context information from the input text to
construct the language projection layer.

2.3.1 Word Projections

Given an input xi with t words, we first project
sequence xi to word projection vectors. We
use word-level context features (e.g., phrases and
word-level skip-grams) extracted from the raw text
to compute the intermediate feature vector ~xw =
Fw and compute projections.

ePj
w(xi) = projection( ~xiw ,

ePj
w) (7)

eipw = eP1...`
w (xiw) (8)

= [ eP1
w(xi), ..., eP`

w(xiw) ]

We reserve ` bits to capture the word projec-
tion space computed using a series of ` functions
eP1
w, ...,

eP`
w. The functions project the sentence

structure into low-dimensional representation that
captures similarity in the word-projection space.

2.3.2 Character Projections

Given the input text xi, we can capture mor-
phology (character-level) information in a simi-
lar way. We use character-level context features

ProjectionCNN  
(Ravi, ICML 2019)

+… upcoming

cabulary words and misspellings, (3) captures se-
mantic and syntactic properties of words; (4) can
be easily plugged to other NLP models and (5) can
support training with data augmentation by perturb-
ing characters of input words. To validate the per-
formance of our approach, we conduct a qualitative
analysis of the nearest neighbours in the learned
representation spaces and a quantitative evaluation
via similarity, language modeling and NLP tasks.

2 Neural Projection Model

We propose a novel model (NP-SG) to learn com-
pact neural representations that combines the bene-
fit of representation learning approaches like skip-
gram model with efficient LSH projections that can
be computed on-the-fly.

2.1 Vanilla Skip-Gram Model
In the skip-gram model (Mikolov et al., 2013),
we learn continuous distributed representations for
words in a large fixed vocabulary, V to predict the
context words surrounding them in documents. We
maintain an embedding look up table, v(w) 2 Rd

for every word, w 2 V.
For each word, wt in the training cor-

pus of size T , the set of context words
Ct = {wt�Wt , . . . , wt�1, wt+1, . . . , wt+Wt} in-
cludes Wt words to the left and right of wt re-
spectively. Wt is the window size randomly sam-
pled from the set {1, 2, . . . , N}, where N is the
maximum window size. Given a pair of words,
{wc, wt}, the probability of wc being within the
context window of wt is given by equation 1.

P(wc|wt) = �(v0(wc)
|
v(wt))

=
1

1 + exp(�v0(wc)|v(wt))

(1)

where v, v
0 are input and context embedding look

up tables.

2.2 Neural Projection Skip-Gram (NP-SG)
In the neural projection approach, we replace the
input embedding look up table, v(w) in equation 1
with a deep n-layer MLP over the binary projection,
P(w) as shown equation 2.

vP(w) = N(fn(P(w))) (2)

where vP(w) 2 Rd, fn is a n-layer deep neural net-
work encoder with ReLU non-linear activations
after each layer except for the last layer as shown

Figure 1: Neural Projection Skip-gram (NP-SG) model

in Figure 1. N refers to a normalization applied to
the final layer of fn. We experimented with Batch-
normalization, L2-normalization and layer normal-
ization; batch-normalization works the best.

The binary projection P(w) is computed us-
ing locality-sensitive projection operations (Ravi,
2017) which can be performed on-the-fly (i.e., with-
out any embedding look up) to yield a fixed, low-
memory footprint binary vector. Unlike (Ravi and
Kozareva, 2018) which uses static projections to
encode the entire input text and learn a classifier,
NP-SG creates a trainable deep projection repre-
sentation for words using LSH projections over
character-level features combined with contextual
information learned via the skip-gram architecture.

2.3 Training NP-SG Model
We follow a similar approach as Mikolov et al.
(2013) and others for training our neural projection
skip-gram model (NP-SG). We define the training
objective to maximize the probability of predicting
the context words given the current word. Formally,
the model tries to learn the word embeddings by
maximizing the objective, J(✓) known as negative
sampling (NEG), given by equation 3.

J(✓) =
TX

t=1

X

wc2Ct

Jwt,wc(✓) (3)

Jwt,wc(✓) = log(P(wc|wt))

+
kX

i=1,wi⇠Pn(w)

log(1� P(wi|wt))
(4)

where k is the number of randomly sampled words
from the training corpus according to the noise
distribution, Pn(w) / U(w)3/4, where U(w) is
the unigram distribution of the training corpus.

ProjectionNet  
(Ravi, 2017) arxiv/abs/1708.00630

SGNN: Self-Governing Neural Networks 
(Ravi & Kozareva, EMNLP 2018) 

Transferable Projection Networks 
(Sankar, Ravi & Kozareva, 

NAACL 2019)

SGNN++ 
Hierarchical, Partitioned Projections 

(Ravi & Kozareva, ACL 2019)

Sujith Ravi

https://arxiv.org/abs/1708.00630
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Table 1. Classification Results (precision@1) for vision tasks using Neural Projection Nets and baselines.
Model Compression Ratio MNIST Fashion CIFAR-10

(wrt baseline) MNIST

NN (3-layer) (Baseline: feed-forward) 1 98.9 89.3 -
CNN (5-layer) (Baseline: convolutional) (Figure 2, Left) 0.52⇤ 99.6 93.1 83.7

Random Edge Removal (Ciresan et al., 2011) 8 97.8 - -
Low Rank Decomposition (Denil et al., 2013) 8 98.1 - -
Compressed NN (3-layer) (Chen et al., 2015) 8 98.3 - -
Compressed NN (5-layer) (Chen et al., 2015) 8 98.7 - -

Dark Knowledge (Hinton et al., 2015; Ba & Caruana, 2014) - 98.3 - -
HashNet (best) (Chen et al., 2015) 8 98.6 - -

NASNet-A (7 cells, 400k steps) (Zoph et al., 2018) - - - 90.5

ProjectionNet

(our approach) Joint (trainer = NN)
[ T=8,d=10 ] 3453 70.6
[ T=10,d=12 ] 2312 76.9
[ T=60,d=10 ] 466 91.1
[ T=60,d=12 ] 388 92.3
[ T=60,d=10 ] + FC [128] 36 96.3
[ T=60,d=12 ] + FC [256] 15 96.9
[ T=70,d=12 ] + FC [256] 13 97.1 86.6

ProjectionCNN (4-layer) (our approach) (Figure 2, Right) 8 99.4 92.7 78.4Joint (trainer = CNN)

ProjectionCNN (6-layer)

(our approach)

(Conv3-64, Conv3-128, Conv3-256, P [ T=60, d=7 ], FC [128 x 256])
Self (trainer = None) 4 82.3
Joint (trainer = NASNet) 4 84.7

tion to the standard baseline models described above, we
compare our approach against other strong compression
baselines from the literature that use different techniques
like weight sharing for compression (Chen et al., 2015).
They use a similar baseline (3-layer NN with 1k units per
layer) as the one listed in Table 1 (row 1). ProjectionCNN
also outperforms previous best results from several other
compression techniques (Chen et al., 2015) on the same
dataset—0.6% error versus 1.22-2.19% achieved by their
best-performing methods. Table 1 shows a detailed compari-
son of our approach against existing compression techniques
on the same task.

Also, for tasks like semantic text classification (described in
Section 3.2) involving LSTMs, even smaller neural network
models require keeping vocabulary matrices O(V · d) with
tens of thousands of words/phrases and >100 dimensions
per row (V � n by 1000x in Section 2.4).

Relation to distillation and similar approaches: In Ta-
ble 1, we also compare our method with other teacher-
student (T-S) training approaches like distillation (Hinton
et al., 2015) which build on top of earlier work (Ba & Caru-
ana, 2014) and show that matching logits (soft targets) is
a special case of distillation. Section 2.1 (Equation 2) de-
scribes how we follow a distillation-style approach to opti-
mize the joint loss component D(.) but the student network
is modeled using a novel projection architecture. More
importantly, we compared our method against optimized
variants of distilled models from the literature that were
trained in T-S setup (Dark Knowledge in Table 1) where the
student uses other compression techniques (baseline details
in (Chen et al., 2015)) and our ProjectionCNN approach

achieves the best results in terms of accuracy %.

Finally, we note that quantization (low-precision computing)
and related techniques provide orthogonal benefits and can
be combined with our method to achieve further optimiza-
tion (i.e., to compress weight values in addition to reducing
#parameters). For example, we can get an additional 4x size-
reduction by using 8-bit integers instead of floating-point to
store weight values as shown in Section 3.2.

More complex image tasks and huge architectures: We
also performed experiments with larger convolutional nets
for more complex image tasks. We observe the same trends
using neural projection approach on Fashion-MNIST task.
The task is much harder where the baseline NN model yields
only 89.3% (compared to 98.9% on MNIST) and CNN
(5-layer) model gets 93.1% (vs. 99.6% on MNIST). Our
ProjectionCNN network achieves 92.7% significantly out-
performing the NN baseline and very competitive with the
deep CNN model but with the benefit of 8x compression.

On CIFAR-10 image classification task, a 5-layer CNN
model yields 83.7% accuracy. Even though it is an unfair
comparison, we also include a more complex deep con-
volutional network, NASNet (Zoph et al., 2018), that was
designed using large-scale architecture search using 1000s
of GPU hours and optimized on the same dataset, produces
90.5% after 400k training steps. In contrast, a much leaner
and significantly faster ProjectionCNN network achieves
82.3% when trained from scratch by itself which improves
to 84.7% with joint training and outperforms the baseline at
4x size-reduction. Projection architectures can yield similar
benefits for other complex neural networks like Inception
and ResNet variants.

Sujith Ravi
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3.2. Semantic Intent Classification from Text

Next, we compare the performance of our neural projection
approach against baselines on text classification tasks.

Tasks. We evaluate our models and report precision@1 on
multiple text classification tasks.
• SmartReply Intent is a real-world semantic intent

classification task for automatically generating short
email responses (Kannan et al., 2016). The goal is
to discover and map short response messages to se-
mantic intents. We use the same task and dataset as
prior works (Bui et al., 2018)1 with 20 intent classes,
5483 samples (3832 for training, 560 for validation and
1091 for testing). Each sample corresponds to a short
response message text paired with a semantic intent
category that was manually verified by human anno-
tators. For example, “That sounds awesome!” and

“Sounds fabulous” are labeled as sounds_good intent.

• ATIS is a benchmark corpus used in the speech and
dialog community (Tur et al., 2010) for understanding
different types of intents (18 classes) expressed during
flight reservations.

Baselines and Method. We use an RNN sequence model
with multilayer LSTM architecture (2 layers, 100 dimen-
sions) as the baseline for the Smart Reply Intent task. For
this task, we compare against previous works (Bui et al.,
2018; Kannan et al., 2016) that use the same baselines as
well as Smart Reply model (LSTM) used in real-world ap-
plications. The only difference is (Kannan et al., 2016)
uses LSTM for end-to-end generation and response rank-
ing whereas our task is classification into response intents.
Other systems include—Random baseline ranks the intent
categories randomly and Frequency baseline ranks them
in order of their frequency in the training corpus. For the
ATIS task, we compare our approach with a recent attention-
based RNN model (Liu & Lane, 2016). We use unigram
and bigram text features in our approach to build projection
models. For these language tasks, we observed that projec-
tion networks achieved high performance even without a
trainer model, so we set �1 = �2 = 0 during training.

Results. We show in Table 2 that ProjectionNet achieves
very high precision@1, significantly outperforming baseline
systems. On both language tasks, the model even outper-
forms RNNs but with significant reduction in memory foot-
print (compression ratio > 10) and computation compared
to LSTM unrolling steps.

1For details regarding SmartReply and how the semantic intent
clusters are generated, refer (Kannan et al., 2016).

Table 2. Classification Results (precision@1) for language tasks
using Neural Projection Nets and baselines.

Model Compression Smart Reply ATIS

(wrt RNN) Intent

Random (Kannan et al., 2016) - 5.2 -
Frequency (Kannan et al., 2016) - 9.2 72.2
LSTM (Kannan et al., 2016) 1 96.8 -
Attention RNN 1 - 91.1
(Liu & Lane, 2016)
ProjectionNet (our approach) >10 97.7 91.3

[ T=70,d=14 ]!FC [256 x 128]

Quantized Projection Network. We also learn mobile-
optimized versions of ProjectionNet models that can run
inference on TensorFlow Lite (TFLite) open-source library.
We apply quantized training with 8-bit operations similar
to (Jacob et al., 2017) to learn a compressed ProjectionNet
with an additional 4x reduction in model size and improved
latency. On ATIS, quantized ProjectionNet reduces the size
from 1.1M to a tiny 285KB footprint and still yields 91.0%.
We also measured the average computation latency for this
model—on a Pixel phone, it requires < 5 milliseconds.

4. Beyond Neural Projections

A few possible future extensions to the framework are dis-
cussed at the end of Section 2. Recent works have also
demonstrated the effectiveness of tailoring projection-based
approaches to solve other natural language tasks (Ravi &
Kozareva, 2018; Sankar et al., 2019).

Going beyond deep learning, we extend this framework to
train lightweight models in semi-supervised or unsupervised
learning scenarios and ProjectionGraphs with structured
loss functions defined using a graph or probabilistic graphi-
cal model instead of a deep network.

The proposed projection-based learning architectures have
been used to power on-device conversational mod-

els (Ravi, 2017) for real-world applications such as Smart
Reply (Kannan et al., 2016) on smartwatches and mobile
devices.

5. Conclusion

We introduced a new Neural Projection approach to train
lightweight neural network models for performing efficient
inference on device at low computation and memory cost.
We demonstrated the flexibility of this approach to variations
in model sizes and deep network architectures. Experimen-
tal results on visual and language classification tasks show
the effectiveness of this method in achieving significant
model size reductions and efficient inference while provid-
ing competitive performance. The projection-based machine
learning models have already been applied to and proven
useful for powering real-world on-device applications such
as smart messaging.

➡ On ATIS, ProjectionNet (quantized) achieves 91.0% with tiny footprint (285KB)

Sujith Ravi
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