Automated Model Selection Using Bayesian Qaudarture

Henry Chai¹ Jean-François Ton² Michael A. Osborne² Roman Garnett¹

¹Washington University in St Louis, ²University of Oxford

ICML 2019

ABQ 2019 1 /

Posterior Probability of a Model

The posterior probability of model i (PPM) is defined as

$$z_i = Z_i / \sum_j Z_j$$

where

$$Z_i = \int f(\mathcal{D}|\theta_i)\pi(\theta_i)d\theta_i$$

is the model evidence for model i and θ_i are the parameters of model M_i , $f(\mathcal{D}|\theta_i)$ is the likelihood and $\pi(\theta_i)$ is the prior.

ABQ 2019 2 /

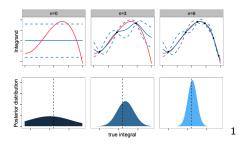
Comparing the model evidences usually relies on Monte Carlo (MC)methods, which converge slowly and are unreliable for expensive models.

ABQ 2019 3 / 9

Bayesian Quadrature

Given some intractable integral

$$Z = \int f(\theta)\pi(\theta)d\theta$$



The goal is it to choose the points where we evaluate the GP efficiently. For example it does not make sense to take 2 points that are really "close".

¹https://warwick.ac.uk/girolami

Hence we can apply Bayesian Quadrature to estimated the model evidences

ABQ 2019 5 / 9

Hence we can apply Bayesian Quadrature to estimated the model evidences

However, this may waste computation by producing an overly-accurate estimate for the evidence of a clearly poor model

ABQ 2019 5

$$--p(\Pr(\mathcal{D} \mid \mathcal{M}_2))$$
 $--p(\Pr(\mathcal{D} \mid \mathcal{M}_1))$

$$\Pr(\mathcal{D} \mid \mathcal{M}_i)$$

ABQ 2019 6 / 9

Idea

We propose a **sampling algorithm** which targets the most important quantity; **Posterior Probability of the Model** i.e. $z_i = Z_i / \sum_j Z_j$.

ABQ 2019 7 / 9

ldea

We propose a **sampling algorithm** which targets the most important quantity; **Posterior Probability of the Model** i.e. $z_i = Z_i / \sum_j Z_j$. NOTE that our task is to decide where to evaluate the likelihood f

$$Z_i = \int f(\mathcal{D}|\theta_i)\pi(\theta_i)d\theta_i$$

ABQ 2019 7 / 9

Idea

We propose a **sampling algorithm** which targets the most important quantity; **Posterior Probability of the Model** i.e. $z_i = Z_i / \sum_j Z_j$. NOTE that our task is to decide where to evaluate the likelihood f

$$Z_i = \int f(\mathcal{D}|\theta_i)\pi(\theta_i)d\theta_i$$

Hence we utilize the following Mutual Information

$$MI(z_i, f(\mathcal{D}|\theta_i))$$

yielding efficient acquisition of samples across disparate model spaces when likelihood observations are limited.

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

ABQ 2019 7 / 9

Synthetic Data

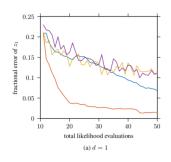
Synthetic dataset

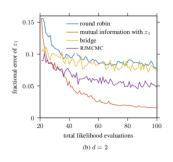
Model selection task between two zero-mean GP models

One with RBF kernel

Other with Matern5/2

The observed dataset \mathcal{D} consists of 5d observations from a d-dimensional, zero-mean GP with a RBF kernel





8/9

ABQ 2019

End

Thanks you for your attention If interested visit poster 06:30-09:00 PM @ Pacific Ballroom

#219

ABQ