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Posterior Probability of a Model

The posterior probability of model i (PPM) is defined as
52152
J

where
Z,-z/f(D[H,-)ﬂ(G,-)dG,-

is the model evidence for model i and 6; are the parameters of model M;,
f(D]0;) is the likelihood and 7(6;) is the prior.
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Comparing the model evidences usually relies on Monte Carlo

(MC)methods, which converge slowly and are unreliable for expensive
models.
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Bayesian Quadrature

Given some intractable integral

Integrand

true integral

Posterior distribution

The goal is it to choose the points where we evaluate the GP efficiently.

For example it does not make sense to take 2 points that are really " close”.

https://warwick.ac.uk/girolami
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Hence we can apply Bayesian Quadrature to estimated the model
evidences
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Hence we can apply Bayesian Quadrature to estimated the model
evidences

However, this may waste computation by producing an
overly-accurate estimate for the evidence of a clearly poor model
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p(Pr(D | M5)) p(Pr(D | M1))

Pr(D | M;)
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We propose a sampling algorithm which targets the most important
quantity; Posterior Probability of the Model i.e. z; = Z;/} . Z;.
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We propose a sampling algorithm which targets the most important
quantity; Posterior Probability of the Model i.e. z; = Z;/} . Z;.

NOTE that our task is to decide where to evaluate the likelihood f

Z = / £(D10;)(6;)d6;
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We propose a sampling algorithm which targets the most important
quantity; Posterior Probability of the Model i.e. z; = Z;/} . Z;.

NOTE that our task is to decide where to evaluate the likelihood f
Zi = / f(D|6;)m(6;)do;
Hence we utilize the following Mutual Information
Mi(z;, £(D]0;))

yielding efficient acquisition of samples across disparate model spaces
when likelihood observations are limited.
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Synthetic Data

Synthetic dataset

Model selection task between two zero-mean GP models

One with RBF kernel
Other with Matern5/2

The observed dataset D consists of 5d observations from a
d-dimensional, zero-mean GP with a RBF kernel
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Thanks you for your attention
If interested visit poster 06:30 — 09:00 PM @ Pacific Ballroom
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