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GOODE: A Gaussian Off-The-Shelf ODE Solver
What are we doing?

Ordinary Differential Equations (ODES)

\‘ d
(O = f(,

L Vector-valued, changes in time

» Important mathematical models
» Broad range of applications
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GOODE: A Gaussian Off-The-Shelf ODE Solver
What are we doing?

Ordinary Differential Equations (ODES) ODE approximation! — Error!
\‘ d P ilistic Numerical Methods (PNM
Ey(t) e OR) robabilistic Numerical Methods ( s)

L » Return probability distributions
Vector-valued, changes intime  » Represent numerical approximation error

» Important mathematical models

» Broad range of applications /

» Recently ODE (solver) also in ML, e.g. y@®) | -

» Building blocks in NNets [Chen 2018] Neural ODEs
» [Grathwohl 2019] FFJORD
» Accelerate optimization [Zhang 2018] t

Figure from [Schober 2014]

Be certain about your uncertainty!
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GOODE: A Gaussian Off-The-Shelf ODE Solver
More specific!

What is the problem?

Nonlinear two-point
Boundary Value Problem (BVP)

Find y: [a, b] » R< such that

ODE  y'(t) = f(y(D),t)
BC  0=g(y(a),yb))

Standard non-probabilistic solver exist.

But no general-purpose probabilistic solver!
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% Novel functionality: probability distribution
over solution space
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% Convergence theory exists

Standard non-probabilistic solver exist.

. How does GOODE work?
But no general-purpose probabilistic solver!
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GOODE: A Gaussian Off-The-Shelf ODE Solver
How does GOODE work?

@ssian Process regression for linear Bm

[Owhadi 2015; 2017], [Cockayne 2016]
[& — Aly(t) = q(©)
P(y(®)) = GP(m(t), k(t, t) Q V)
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Quasilinearization of nonlinear BVP \

[Bellman, Kalaba 1965]

Newton’s method in function space

» Series of linear BVPs
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GOODE

lteratively approximate nonlinear problem

Quasilinearization of nonlinear BVP \

[Bellman, Kalaba 1965]
Newton’s method in function space
» Series of linear BVPs
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[Bellman, Kalaba 1965]
Newton’s method in function space
» Series of linear BVPs
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GOODE: A Gaussian Off-The-Shelf ODE Solver
How good does GOODE work?
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,' Comparison to standard non- !
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GOODE: A Gaussian Off-The-Shelf ODE Solver
How good does GOODE work?

Comparable in accuracy!
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GOODE: A Gaussian Off-The-Shelf ODE Solver
Want to know more?

Matlab code @ github.com/boschresearch/GOODE
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