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Background
Why Graphs?

Non-Euclidean domains are everywhere!
Useful information in the structure of an observation.

Geometric Deep Learning provides many insights.

Large number of parameters, small number of
observations.

Bayesian methods and Gaussian processes.

Typically perform poorly with large input dimensions.

Convolutional Gaussian Processes (van der Wilk, et al 2017)

Provide an efficient algorithm for estimating GPs that
decompose into functions on subsets of inputs.



Graph Convolutional Gaussian Processes
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Related Work and Contributions

Graph GPs (Ng et al., 2018) rely on the graph Laplacian,
which limits their applicability to the same domain:

Same number of vertices and edge structure.

GCGPs can be applied across domains with different edge
structure.



MNIST Results

Table 1: Error rates on MNIST classification

Method Error rate

MNIST
Conv. GP (25-dim) † 2.1%
RBF GP (784-dim) † 1.9%
GCGP (24-dim) 1.7%

† van der Wilk, et al (2017)



Superpixel MNIST Results

Table 2: Error rates on Superpixel MNIST classification

Method Error rate

MNIST Superpixel 75
ChebNet (Defferrard, et al 2016) 24.4%
MoNet (Monti, et al 2017) 8.9%
GCGP 4.2%

Table 3: Ablation study on Superpixel 75 error rates

Examples per class 100 500 1000

Error rate 13.7% 8.3% 6.3%



3D Mesh Results

Table 4: Error rates on MPI Faust mesh classification

Number of vertices 500 1000 2500

MoNet 40.00% 33.33% 33.33%
GCGP 23.33% 10.00% 3.33%
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