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Graphs

• Many data can be modelled as graphs, e.g. social networks,
protein-protein interaction networks and molecules.
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Brief Review of Graph Convolutional Networks
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Can we build GCN in an unsupervised
way?
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Euclidean Scattering Transform

Figure: Illustration of scattering transform for feature extraction
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Graph Wavelets

• Graph Wavelet: defined as the difference between lazy
random walks at different time scales:

Ψj = P2j−1 − P2j = P2j−1
(I− P2j−1

) .

• Graph wavelet transform up to the scale 2J :

WJ f = {P2J f , Ψj f : j ≤ J} = {f ∗ φJ , f ∗ ψj : j ≤ J} .
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Graph Wavelet Transform

j

(a) Sample graph of bunny manifold

j

(b) Minnesota road network graph

Figure: Wavelets Ψj for increasing scale 2j left to right, applied to Diracs
centered at two different locations (marked by red circles) in two graphs.



Introduction Scattering Transform in Euclidean Space Geometric Scattering on Graphs

Geometric Scattering Transform

• Zero order feature:

Sf(q) =
n∑

`=1

f(v`)q , 1 ≤ q ≤ Q

• First order feature:

Sf(j , q) =
n∑

`=1

|Ψj f(v`)|q , 1 ≤ j ≤ J, 1 ≤ q ≤ Q

• Second order feature:

Sf(j , j ′, q) =
n∑

`=1

|Ψj′ |Ψj f(v`)||q , 1 ≤ j < j ′ ≤ J
1 ≤ q ≤ Q
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Graph Classification on Social Networks

COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K REDDIT-12K
WL 77.82± 1.45 71.60± 5.16 N/A 78.52± 2.01 50.77± 2.02 34.57± 1.32

Graphlet 73.42± 2.43 65.40± 5.95 N/A 77.26± 2.34 39.75± 1.36 25.98± 1.29
WL-OA 80.70± 0.10 N/A N/A 89.30± 0.30 N/A N/A

DGK 73.00± 0.20 66.90± 0.50 44.50± 0.50 78.00± 0.30 41.20± 0.10 32.20± 0.10
DGCNN 73.76± 0.49 70.03± 0.86 47.83± 0.85 N/A 48.70± 4.54 N/A
2D CNN 71.33± 1.96 70.40± 3.85 N/A 89.12± 1.70 52.21± 2.44 48.13± 1.47

PSCN 72.60± 2.15 71.00± 2.29 45.23± 2.84 86.30± 1.58 49.10± 0.70 41.32± 0.42
GCAPS-CNN 77.71± 2.51 71.69± 3.40 48.50± 4.10 87.61± 2.51 50.10± 1.72 N/A
S2S-P2P-NN 81.75± 0.80 73.80± 0.70 51.19± 0.50 86.50± 0.80 52.28± 0.50 42.47± 0.10

GIN-0 (MLP-SUM) 80.20± 1.90 75.10± 5.10 52.30± 2.80 92.40± 2.50 57.50± 1.50 N/A
GS-SVM 79.94± 1.61 71.20± 3.25 48.73± 2.32 89.65± 1.94 53.33± 1.37 45.23± 1.25

Table: Comparison of the proposed GS-SVM classifier with leading deep
learning methods on social graph datasets.
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Classification with Low Training-data Availability
Graph classification with four training/validation/test splits:

• 80%/10%/10%

• 70%/10%/20%

• 40%/10%/50%

• 20%/10%/70%

Training data reduced from 80% to 20% only results in a
decrease of 3% in classification accuracy on social network
datasets

Figure: Drop in SVM classification accuracy over social graph datasets when
reducing training set size
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Dimensionality Reduction
ENZYME dataset: on average 124.2 edges, 29.8 vertices, and 3 features
per vertex per graph

Geometric scattering combined with PCA enables significant
dimensionality reduction with only a small impact on classification
accuracy

Figure: Relation between explained variance, SVM classification accuracy,
and PCA dimensions over scattering features in ENZYMES dataset.
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Data Exploration: Enzyme Class Exchange Preferences
• ENZYME dataset contains enzymes from six top level enzyme classes and are

labelled by their Enzyme Commission (EC) numbers.
• Geometric scattering features are considered as signature vectors for individual

enzymes, and can be used to infer EC exchange preferences during enzyme
evolution.

Scattering features are sufficiently rich to capture relations
between enzyme classes

(a) observed (b) inferred

Figure: Comparison of EC exchange preferences in enzyme evolution: (a)
observed in Cuesta et al. (2015), and (b) inferred from scattering features
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Conclusion

• A generalization of Euclidean scattering transform to graph.

• Scattering features can serve as universal representations of
graphs.

• Geometric scattering transform provides a new way for
computing and considering global graph representations,
independent of specific learning tasks.
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Thank you!
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