Repairing without Retraining:

Avoiding Disparate Impact with Counterfactual Distributions

Hao Wang, Berk Ustun, Flavio P. Calmon hao_wang@g.harvard.edu, {berk,Flavio}@seas.harvard.edu

Outline

Use cases

- A bank enters a new market and discovers its credit score underperforms on customers over 60 years of age
- A rural clinic purchases a classification model to detect lung cancer and discovers that patients in a certain subgroup have high FPR
- Framework and methodology
 - "Counterfactual distribution"
 - Local perturbation and influence function
- Model repair

Disparate Impact

Disparate Impact

3

Counterfactual Distribution

Definition. For a given disparity metric $M(\cdot)$, a counterfactual distribution is a distribution of input variables over the target group such that:

$$Q_X \in \operatorname*{argmin}_{Q_X' \in \mathcal{P}} \left| \mathsf{M}(Q_X') \right|,$$

where \mathcal{P} is the set of probability distributions over \mathcal{X} .

Distributions over input

	Obse	RVED	Counterfactual			
	Female	Male	SP Female	FNR Female	FPR Male	
Married	18%	63%	39%	23%	54%	
Immigrant	10%	11%	11%	11%	12%	
HighestDegree_is_HS	32%	32%	24%	28%	37%	
HighestDegree_is_AS	7%	8%	9%	9%	6%	
HighestDegree_is_BS	15%	18%	21%	17%	13%	
HighestDegree_is_MSorPhD	6%	7%	13%	8%	5%	
AnyCapitalLoss	3%	5%	8%	5%	4%	
$Age \leq 30$	39%	29%	29%	38%	35%	
WorkHrsPerWeek<40	38%	17%	33%	37%	19%	
$JobType_is_WhiteCollar$	34%	19%	36%	35%	15%	
JobType_is_BlueCollar	5%	34%	4%	5%	39%	
JobType_is_Specialized	23%	21%	29%	23%	20%	
JobType_is_ArmedOrProtective	1%	2%	1%	1%	3%	
Industry_is_Private	73%	69%	64%	69%	70%	
Industry_is_Government	15%	12%	22%	17%	12%	
$Industry_is_SelfEmployed$	5%	15%	8%	6%	13%	

Goal: Model Repair

Goal: repair a classifier that has disparate impact by preprocessing the data

Goal: Model Repair

We build the pre-processor in two steps:

- Compute a counterfactual distribution that minimizes disparate impact.
- 2) Solve an optimal transport problem between the distribution of the target population and the counterfactual distribution.

Numerical Experiments: COMPAS and UCI Adult

			Original Model		REPAIRED MODEL		TARGET GROUP AUC		
Dataset	METRIC	Target Group	Baseline Group	Target Group	Disc. Gap	Target Group	Disc. Gap	Before Repair	AFTER REPAIR
adult	SP	Female	0.696	0.874	0.178	0.688	-0.007	0.895	0.758
adult	FNR	Female	0.478	0.639	0.161	0.483	0.004	0.895	0.880
adult	FPR	Male	0.021	0.119	0.098	0.023	0.002	0.829	0.714
compas	SP	White	0.514	0.594	0.079	0.533	0.018	0.704	0.667
compas	FNR	White	0.350	0.487	0.137	0.439	0.088	0.704	0.699
compas	FPR	Non-white	0.190	0.278	0.087	0.160	-0.029	0.732	0.680

Repairing without Retraining:

Avoiding Disparate Impact with Counterfactual Distributions

Poster Session:

Thursday 06:30 -- 09:00 PM

Pacific Ballroom

