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ĥ0

(0, 0) 50 101 - 100 50 + 150 151 -
(0, 1) 101 50 + 50 100 - 151 150 +
(1, 0) 101 50 + 50 100 - 151 150 +
(1, 1) 101 50 + 50 100 - 151 150 +

Figure 1. Training a pooled classifier that ignores group member-
ship may impose unavoidable trade-offs between groups. We are
given data from two groups z 2 {A,B} with heterogeneous data
distributions P (y = +1|x, A) = P (y = �1|x, B). Here, n+

and n
� denote the number of training examples with y = +1 and

y = �1. Decoupled training produces the best classifier for each
group ĥA = h

⇤
A and ĥB = h

⇤
B , both of which have an error rate

of 33%. In contrast, pooled training produces a classifier ĥ0 with
disparate impact due to a tyranny of the majority: the data contains
slightly more samples from A so that empirical risk minimization
outputs the best classifier for A which is the worst classifier for
B. Pooled training with a parity constraint such as equal accuracy
between A and B would fix the performance gap, but achieve
an error rate of 50% for each group, missing the opportunity to
provide better accuracy.

In this paper, we aim to use sensitive attributes in a way
that is aligned with the principles of beneficence and non-
maleficence. Towards beneficence, we make use of decou-
pled classifiers— i.e., train a classifier for each group using
data from that group. Decoupling is a simple technique that
will recover the most accurate model for each group in an
ideal setting where we are given unlimited data. In practice,
however, it must be used with care since it may harm groups
with insufficient data. Towards non-maleficence, we adopt
the use of preference guarantees, which are a variation on
those suggested by Zafar et al. (2017b). We require that
each group should prefer their assigned model to (i) a pooled
model that ignores group membership (rationality) and (ii)
the model assigned to any other group (envy-freeness).

In settings where individuals prefer more accurate models,
rationality and envy-freeness ensure that the majority of
individuals in each group would choose to report their sensi-
tive attributes if they were allowed to not report them (thus
opting for a pooled model) or to misreport them (thus opting
for the model assigned to another group).

The main contributions of this paper are:

• We present formal conditions for fair decoupling, i.e., that
the preference guarantees of rationality and envy-freeness
are satisfied. This is non-trivial because we require these
properties to hold with respect to generalization error.

• We develop a recursive partitioning procedure to train de-
coupled classifiers for groups specified by multiple sensi-
tive attributes without violating their preferences.

• We pair our procedure with an integer programming
method to train linear classifiers via 0-1 loss minimiza-
tion. This produces classifiers that satisfy preferences on
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Figure 2. A pooled classifier that encodes group membership may
not perform as well as a pair of decoupled classifier when we
fit classifiers from a hypothesis class that cannot represent the
heterogeneity between groups. Here, we consider training linear
classifiers using data from heterogeneous groups z 2 {A,B}. A
linear classifier trained separately for each group has zero error.
However, there does not exist a linear, pooled classifier with zero
error due to the XOR structure.

training data and avoids pitfalls of surrogate loss minimiza-
tion in our setting.

• We present experiments on real-world datasets that show
that our procedure can output classifiers with good accu-
racy and that are responsive to preference guarantees.

Related Work We build on the work of Zafar et al.
(2017b), who present the preference-based notions of envy-
freeness, as well as preferred impact, which requires that
groups prefer their assigned classifier to a pooled classifier
trained with a parity constraint. Their method trains a linear
classifier for each group by solving a coupled empirical risk
minimization problem that enforces preferences with a con-
vex surrogate loss function. In our experiments, we show
that this approach may violate preference guarantees, even
on training data. In contrast, decoupled training via 0-1 loss
minimization immediately achieves preference guarantees
on training data (see Remark 1), and is developed here as
an adaptive procedure that ensures preferences on test data.

Our paper also builds on the work of Dwork et al. (2018),
who study decoupling as a way to achieve parity-based
notions of fairness. Their work presents impossibility results
to motivate decoupling (i.e., a bound on the maximum loss
of accuracy due to pooled training for different hypothesis
classes), as well as a computationally efficient procedure
to optimize a joint loss function on a set of classifiers (see
also Alabi et al., 2018). While their work does not consider
preference guarantees, it does caution that decoupling may
harm groups with insufficient data. They propose mitigating
the harm by transfer learning, but their experiments show
that this approach may still result in harm.

Our work is broadly related to several streams in the liter-
ature on fair machine learning. Our goals resemble those
of Chen et al. (2018), who present a beneficent approach
to reduce performance disparities between groups via data
collection. Our method aims to ensure preferences in terms
of generalization error (c.f. Woodworth et al., 2017; Cotter
et al., 2018) and among intersectional groups (c.f., Kearns
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A and ĥB = h

⇤
B , both of which have an error rate

of 33%. In contrast, pooled training produces a classifier ĥ0 with
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not perform as well as a pair of decoupled classifier when we
fit classifiers from a hypothesis class that cannot represent the
heterogeneity between groups. Here, we consider training linear
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linear classifier trained separately for each group has zero error.
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error due to the XOR structure.

training data and avoids pitfalls of surrogate loss minimiza-
tion in our setting.

• We present experiments on real-world datasets that show
that our procedure can output classifiers with good accu-
racy and that are responsive to preference guarantees.

Related Work We build on the work of Zafar et al.
(2017b), who present the preference-based notions of envy-
freeness, as well as preferred impact, which requires that
groups prefer their assigned classifier to a pooled classifier
trained with a parity constraint. Their method trains a linear
classifier for each group by solving a coupled empirical risk
minimization problem that enforces preferences with a con-
vex surrogate loss function. In our experiments, we show
that this approach may violate preference guarantees, even
on training data. In contrast, decoupled training via 0-1 loss
minimization immediately achieves preference guarantees
on training data (see Remark 1), and is developed here as
an adaptive procedure that ensures preferences on test data.

Our paper also builds on the work of Dwork et al. (2018),
who study decoupling as a way to achieve parity-based
notions of fairness. Their work presents impossibility results
to motivate decoupling (i.e., a bound on the maximum loss
of accuracy due to pooled training for different hypothesis
classes), as well as a computationally efficient procedure
to optimize a joint loss function on a set of classifiers (see
also Alabi et al., 2018). While their work does not consider
preference guarantees, it does caution that decoupling may
harm groups with insufficient data. They propose mitigating
the harm by transfer learning, but their experiments show
that this approach may still result in harm.

Our work is broadly related to several streams in the liter-
ature on fair machine learning. Our goals resemble those
of Chen et al. (2018), who present a beneficent approach
to reduce performance disparities between groups via data
collection. Our method aims to ensure preferences in terms
of generalization error (c.f. Woodworth et al., 2017; Cotter
et al., 2018) and among intersectional groups (c.f., Kearns
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not perform as well as a pair of decoupled classifier when we
fit classifiers from a hypothesis class that cannot represent the
heterogeneity between groups. Here, we consider training linear
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training data and avoids pitfalls of surrogate loss minimiza-
tion in our setting.

• We present experiments on real-world datasets that show
that our procedure can output classifiers with good accu-
racy and that are responsive to preference guarantees.

Related Work We build on the work of Zafar et al.
(2017b), who present the preference-based notions of envy-
freeness, as well as preferred impact, which requires that
groups prefer their assigned classifier to a pooled classifier
trained with a parity constraint. Their method trains a linear
classifier for each group by solving a coupled empirical risk
minimization problem that enforces preferences with a con-
vex surrogate loss function. In our experiments, we show
that this approach may violate preference guarantees, even
on training data. In contrast, decoupled training via 0-1 loss
minimization immediately achieves preference guarantees
on training data (see Remark 1), and is developed here as
an adaptive procedure that ensures preferences on test data.

Our paper also builds on the work of Dwork et al. (2018),
who study decoupling as a way to achieve parity-based
notions of fairness. Their work presents impossibility results
to motivate decoupling (i.e., a bound on the maximum loss
of accuracy due to pooled training for different hypothesis
classes), as well as a computationally efficient procedure
to optimize a joint loss function on a set of classifiers (see
also Alabi et al., 2018). While their work does not consider
preference guarantees, it does caution that decoupling may
harm groups with insufficient data. They propose mitigating
the harm by transfer learning, but their experiments show
that this approach may still result in harm.

Our work is broadly related to several streams in the liter-
ature on fair machine learning. Our goals resemble those
of Chen et al. (2018), who present a beneficent approach
to reduce performance disparities between groups via data
collection. Our method aims to ensure preferences in terms
of generalization error (c.f. Woodworth et al., 2017; Cotter
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ĥ0

(0, 0) 50 101 - 100 50 + 150 151 -
(0, 1) 101 50 + 50 100 - 151 150 +
(1, 0) 101 50 + 50 100 - 151 150 +
(1, 1) 101 50 + 50 100 - 151 150 +

Figure 1. Training a pooled classifier that ignores group member-
ship may impose unavoidable trade-offs between groups. We are
given data from two groups z 2 {A,B} with heterogeneous data
distributions P (y = +1|x, A) = P (y = �1|x, B). Here, n+

and n
� denote the number of training examples with y = +1 and

y = �1. Decoupled training produces the best classifier for each
group ĥA = h

⇤
A and ĥB = h
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Figure 2. A pooled classifier that encodes group membership may
not perform as well as a pair of decoupled classifier when we
fit classifiers from a hypothesis class that cannot represent the
heterogeneity between groups. Here, we consider training linear
classifiers using data from heterogeneous groups z 2 {A,B}. A
linear classifier trained separately for each group has zero error.
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training data and avoids pitfalls of surrogate loss minimiza-
tion in our setting.

• We present experiments on real-world datasets that show
that our procedure can output classifiers with good accu-
racy and that are responsive to preference guarantees.

Related Work We build on the work of Zafar et al.
(2017b), who present the preference-based notions of envy-
freeness, as well as preferred impact, which requires that
groups prefer their assigned classifier to a pooled classifier
trained with a parity constraint. Their method trains a linear
classifier for each group by solving a coupled empirical risk
minimization problem that enforces preferences with a con-
vex surrogate loss function. In our experiments, we show
that this approach may violate preference guarantees, even
on training data. In contrast, decoupled training via 0-1 loss
minimization immediately achieves preference guarantees
on training data (see Remark 1), and is developed here as
an adaptive procedure that ensures preferences on test data.

Our paper also builds on the work of Dwork et al. (2018),
who study decoupling as a way to achieve parity-based
notions of fairness. Their work presents impossibility results
to motivate decoupling (i.e., a bound on the maximum loss
of accuracy due to pooled training for different hypothesis
classes), as well as a computationally efficient procedure
to optimize a joint loss function on a set of classifiers (see
also Alabi et al., 2018). While their work does not consider
preference guarantees, it does caution that decoupling may
harm groups with insufficient data. They propose mitigating
the harm by transfer learning, but their experiments show
that this approach may still result in harm.

Our work is broadly related to several streams in the liter-
ature on fair machine learning. Our goals resemble those
of Chen et al. (2018), who present a beneficent approach
to reduce performance disparities between groups via data
collection. Our method aims to ensure preferences in terms
of generalization error (c.f. Woodworth et al., 2017; Cotter
et al., 2018) and among intersectional groups (c.f., Kearns
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ĥ0

(0, 0) 50 101 - 100 50 + 150 151 -
(0, 1) 101 50 + 50 100 - 151 150 +
(1, 0) 101 50 + 50 100 - 151 150 +
(1, 1) 101 50 + 50 100 - 151 150 +

Figure 1. Training a pooled classifier that ignores group member-
ship may impose unavoidable trade-offs between groups. We are
given data from two groups z 2 {A,B} with heterogeneous data
distributions P (y = +1|x, A) = P (y = �1|x, B). Here, n+

and n
� denote the number of training examples with y = +1 and

y = �1. Decoupled training produces the best classifier for each
group ĥA = h

⇤
A and ĥB = h

⇤
B , both of which have an error rate

of 33%. In contrast, pooled training produces a classifier ĥ0 with
disparate impact due to a tyranny of the majority: the data contains
slightly more samples from A so that empirical risk minimization
outputs the best classifier for A which is the worst classifier for
B. Pooled training with a parity constraint such as equal accuracy
between A and B would fix the performance gap, but achieve
an error rate of 50% for each group, missing the opportunity to
provide better accuracy.

In this paper, we aim to use sensitive attributes in a way
that is aligned with the principles of beneficence and non-
maleficence. Towards beneficence, we make use of decou-
pled classifiers— i.e., train a classifier for each group using
data from that group. Decoupling is a simple technique that
will recover the most accurate model for each group in an
ideal setting where we are given unlimited data. In practice,
however, it must be used with care since it may harm groups
with insufficient data. Towards non-maleficence, we adopt
the use of preference guarantees, which are a variation on
those suggested by Zafar et al. (2017b). We require that
each group should prefer their assigned model to (i) a pooled
model that ignores group membership (rationality) and (ii)
the model assigned to any other group (envy-freeness).

In settings where individuals prefer more accurate models,
rationality and envy-freeness ensure that the majority of
individuals in each group would choose to report their sensi-
tive attributes if they were allowed to not report them (thus
opting for a pooled model) or to misreport them (thus opting
for the model assigned to another group).

The main contributions of this paper are:

• We present formal conditions for fair decoupling, i.e., that
the preference guarantees of rationality and envy-freeness
are satisfied. This is non-trivial because we require these
properties to hold with respect to generalization error.

• We develop a recursive partitioning procedure to train de-
coupled classifiers for groups specified by multiple sensi-
tive attributes without violating their preferences.

• We pair our procedure with an integer programming
method to train linear classifiers via 0-1 loss minimiza-
tion. This produces classifiers that satisfy preferences on

GROUP A

x1 n
+

n
�

h
⇤

A

0 50 0 -
1 0 50 +

GROUP B

x1 n
+

n
�

h
⇤

B

0 0 50 +
1 50 0 -

POOLED WITH z

(x1, z) n
+

n
�

h
⇤

0

(0,0) 0 50 +
(1,0) 50 0 -
(0,1) 50 0 -
(1,1) 0 50 +

Figure 2. A pooled classifier that encodes group membership may
not perform as well as a pair of decoupled classifier when we
fit classifiers from a hypothesis class that cannot represent the
heterogeneity between groups. Here, we consider training linear
classifiers using data from heterogeneous groups z 2 {A,B}. A
linear classifier trained separately for each group has zero error.
However, there does not exist a linear, pooled classifier with zero
error due to the XOR structure.

training data and avoids pitfalls of surrogate loss minimiza-
tion in our setting.

• We present experiments on real-world datasets that show
that our procedure can output classifiers with good accu-
racy and that are responsive to preference guarantees.

Related Work We build on the work of Zafar et al.
(2017b), who present the preference-based notions of envy-
freeness, as well as preferred impact, which requires that
groups prefer their assigned classifier to a pooled classifier
trained with a parity constraint. Their method trains a linear
classifier for each group by solving a coupled empirical risk
minimization problem that enforces preferences with a con-
vex surrogate loss function. In our experiments, we show
that this approach may violate preference guarantees, even
on training data. In contrast, decoupled training via 0-1 loss
minimization immediately achieves preference guarantees
on training data (see Remark 1), and is developed here as
an adaptive procedure that ensures preferences on test data.

Our paper also builds on the work of Dwork et al. (2018),
who study decoupling as a way to achieve parity-based
notions of fairness. Their work presents impossibility results
to motivate decoupling (i.e., a bound on the maximum loss
of accuracy due to pooled training for different hypothesis
classes), as well as a computationally efficient procedure
to optimize a joint loss function on a set of classifiers (see
also Alabi et al., 2018). While their work does not consider
preference guarantees, it does caution that decoupling may
harm groups with insufficient data. They propose mitigating
the harm by transfer learning, but their experiments show
that this approach may still result in harm.

Our work is broadly related to several streams in the liter-
ature on fair machine learning. Our goals resemble those
of Chen et al. (2018), who present a beneficent approach
to reduce performance disparities between groups via data
collection. Our method aims to ensure preferences in terms
of generalization error (c.f. Woodworth et al., 2017; Cotter
et al., 2018) and among intersectional groups (c.f., Kearns

best models for each 

group makes 0 mistakes 



Standard Techniques Can Harm Groups

adult dataset with 12 groups based on 
gender × marital_status × immigration_status

Training Error
for everyone

LR with No Attributes 27.9%

LR with 1-Hot Encoding 27.0%

Change in Error -0.9%



Standard Techniques Can Harm Groups

Training Error
for everyone

Training Error
(female, married, resident)

LR with No Attributes 27.9% 33.5%

LR with 1-Hot Encoding 27.0% 35.3%

Change in Error -0.9% +1.8%

groups should not be worse off when we use their sensitive attributes

adult dataset with 12 groups based on 
gender × marital_status × immigration_status

Training Error
for everyone

LR with No Attributes 27.9%

LR with 1-Hot Encoding 27.0%

Change in Error -0.9%



Decoupled Classifiers with Preference Guarantees
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Preference Guarantees

Rationality
each group has better test accuracy with

own model vs. blind model

Envy-Freeness
each group has better test accuracy with
own model vs. model of another group

Rationality Violation
majority of members would rather 

not report group membership

Envy-freeness Violation
majority of members would rather 

misreport group membership
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Abstract

In domains such as medicine, it can be acceptable
for machine learning models to include sensitive
attributes such as gender and ethnicity. In this
work, we argue that when there is this kind of
treatment disparity then it should be in the best
interest of each group. Drawing on ethical prin-
ciples such as beneficence (“do the best”) and
non-maleficence (“do no harm”), we show how
to use sensitive attributes to train decoupled clas-
sifiers that satisfy preference guarantees. These
guarantees ensure the majority of individuals in
each group prefer their assigned classifier to (i) a
pooled model that ignores group membership (ra-
tionality), and (ii) the model assigned to any other
group (envy-freeness). We introduce a recursive
procedure that adaptively selects group attributes
for decoupling, and present formal conditions to
ensure preference guarantees in terms of general-
ization error. We validate the effectiveness of the
procedure on real-world datasets, showing that it
improves accuracy without violating preference
guarantees on test data.

1. Introduction

When machine learning systems are deployed in human-
facing applications (e.g., lending, hiring, medical decision
support), their performance may vary over groups defined
by sensitive attributes such as gender and ethnicity. Such
performance disparities are now regularly reported (Angwin
et al., 2016; Dastin, 2018), eliciting calls for fairness in
machine learning (Crawford, 2013), and prompting the de-
velopment of technical solutions (Zliobaite, 2015; Barocas
et al., 2018; Corbett-Davies & Goel, 2018).
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Many of the proposed methods for fair machine learning
have aimed to build models that predict or perform in the
same way across groups (e.g., Hardt et al., 2016; Zafar
et al., 2017a; Feldman et al., 2015; Zafar et al., 2017c;
Agarwal et al., 2018; Narasimhan, 2018). Such methods
can be broadly viewed as methods to achieve fairness by
parity (see Zafar et al., 2017b, for a discussion). Parity is
an appropriate notion of fairness for applications such as
hiring or sentencing, where a model that exhibits disparate
treatment or disparate impact may be viewed as a system
to perpetrate wrongful discrimination (see Arneson, 2006;
Hellman, 2008; Barocas & Selbst, 2016).

In comparison, less work has sought to articulate suitable
notions of fairness for domains with different ethical prin-
ciples (with some exceptions, see e.g., Chen et al., 2018).
In medical applications, for example, the relevant ethical
principles are beneficence (do the best in one’s ability) and
non-maleficence (do no harm) (see e.g., Beauchamp et al.,
2001). Accordingly, methods for fair machine learning
should be designed to produce the most accurate model
for each group (beneficence) without harming any group
(non-maleficence).

These goals represent new challenges for the fair use of sen-
sitive attributes in machine learning. Consider, for example,
training a medical diagnostic using a dataset with sensitive
attributes such as age, gender and ethnicity. In this case, a
model that ignores group membership may not be benef-
icent as it may impose inevitable performance trade-offs
between heterogeneous groups (see Figure 1). In practice,
heterogeneity may arise due to intrinsic differences between
groups, or discrepancies in the quality or amount of data.

While these issues motivate the need to build models that
explicitly consider group membership (see Corbett-Davies
et al., 2017; Lipton et al., 2018), it is not clear how to do
this in a way that is fair to each group. As shown in Figure
2, simple approaches such as a “one-hot encoding” may not
recover the most accurate model for each group. Conversely,
one could harm groups by fitting a model from a hypothesis
class that is overly complex (e.g., by overfitting), or that
one that cannot adequately capture the heterogeneity (e.g.,
by “gerrymandering” along intersectional subgroups as dis-
cussed in Kearns et al., 2018; Hébert-Johnson et al., 2018).


