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Why Fair Representation Learning?

Fair Representation: [x, a] 528 %t

Given sensitive attribute a € {0, 1}, we want:

e z | a (demographic parity) with z = f(x, a)
e z maintains as much info about x as possible

A fair representation acts as a group parity bottleneck

Current approaches are flexible w.r.t. downstream task labels (Madras et al., 2018)

but inflexible w.r.t. sensitive attributes
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Further Motivation

Subgroup discrimination

o We would like to handle the case where a € {0,1}"= is a vector of sensitive
attributes

e ML systems can discriminate against subgroups defined via conjunctions of
sensitive attributes (Buolamwini & Gebru, 2018)

Disentangled Representation Learning
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Flexibly Fair VAE
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Data flow at train time (left) and test time (right) for FFVAE

Latent Code Modification

Desiderata
e To achieve DP w.r.t. some a;, use
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Flexibly Fair VAE
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Learning Objective
Lervae(p; q) = Eq(zppx [log p(x|z, b) + a Z log p(aj|bj)]
J
—vDru(q(z, b)lla(2) [ T a(8))
J

— Dk [a(z, blx)||p(z, b)]

« encourages predictiveness in the latent code; v encourages disentanglement
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Results - Synthetic Data

DSpritesUnfair
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Figure: With correlated factors of variation, a fair classification task is
predicting Shape without discriminating against XPosition
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Figure: Pareto-fronts showing fairness-accuracy tradeoff curves,
DSpritesUnfair dataset. Optimal point is top left corner (perfect
accuracy, no unfairness). y = XPosition.

App 2 |E[y = 1]a=1] — E[y = 1|a = 0]| with y € {0, 1}
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Results - Tabular and Image Data

Communities & Crime
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Neighborhood-level population
statistics: 120 features for 1,994
neighborhoods

We choose racePctBlack (R),
blackPerCap (B), and
pctNotSpeakEnglWell (P) as
sensitive attributes

Held-out label
y = violentCrimesPerCapita
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typical failure:
a=CAM

Over 200,000 images of celebrity
faces, each associated with 40
binary attributes (OvalFace,
HeavyMakeup, etc.)

We choose Chubby (C), Eyeglasses
(E) and Male (M) as sensitive
attributes

Held-out label

y = HeavyMakeup (H)



Conclusion

e FFVAE enables flexibly fair downstream classification by
disentangling information from multiple sensitive attributes

e Future work: extending to other group fairness definitions,
and studying robustness of disentangled/fair representation

learners to distribution shift

e Visit us at poster # 131 tonight!
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