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Centroid Clustering
Set N of n points
Set M of m centers.
(M=N is common)

Want to choose a set X
of at most k centers.

Point i has
cost d(i, x) 
for center x.

Typically we want to minimize the sum of 
costs (k-median) or squared costs (k-means).



How should we cluster if the data points represent 
individuals who care about how they are clustered?



Motivating Applications
Facility Location Precision Medicine

For example, if we want to decide where 
to build public parks, we might cluster 
home locations, where points prefer to be 
closer to the centers.

Alternatively, when clustering medical 
data, we might want to ensure that we 
don’t inaccurately cluster any large 
subgroup of agents. 



Defining Proportionality
Entitlements. We assume that any n/k agents are entitled to 
choose their own center/cluster if they wish.

Let Di(X) = minx2X d(i, x)

A proportional clustering is a clustering for which there is 
no blocking coalition.

(This definition adapts the idea of fairness as core from the 
fair resource allocation literature [Fain et al., 2018]).   

A blocking coalition against X is a set S ✓ N of
at least n/k points and a center y such that d(i, y) <
Di(X) for all i 2 S.



Defining Proportionality

Example. Suppose k=6 and M = N.

A blocking coalition! These agents 
are “paying” for the outliers.



Defining Proportionality
A proportional clustering is a clustering for which there is 
no blocking coalition.
Example. Suppose k=6.

This, instead, would be a proportional 
clustering.



Defining Proportionality

Some Advantages.

• Ensures a form of “no justified complaint” guarantee

• Is oblivious to protected/sensitive demographics (while 
still protecting such subgroups)

• Not sensitive to outliers

• Can be efficiently computed and audited (this paper)



Proportional
Clustering

Traditional 
Clustering

Proportionality vs. Traditional 
Clustering
Traditional clustering, for 
example, k-means or k-
median minimization, force 
some points to pay for the 
high variance in other regions 
of the data. 

(One might see these kinds of 
instances as an independent 
motivation for proportionality)



Existence

∞

A proportional clustering may not exist. In that case, we 
need a notion of approximate proportionality.

X is ⇢-proportional if for all S ✓ N with |S| � dn
k e, and

for all y 2 M , there exists i 2 S such that ⇢ · d(i, y) �
Di(X).

Result 1. For ⇢ < 2, a ⇢-proportional clustering may

not exist. However, we can always compute a (1 +
p
2)-

proportional clustering in Õ(n
2
) time.



Greedy Capture Algorithm
• All points start out un-captured, and X is empty.
• Continuously grow balls around every center.

• If there are n/k un-captured points in the ball around j:
• Add j to X, which captures those points.

• If an un-captured point is in the ball around j in X:
• j captures the point.
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Upper Bound
Theorem. The greedy capture algorithm returns a
(1 +

p
2)-proportional clustering.

Proof. Suppose the algorithm returns some X that is
not (1 +

p
2)-proportional.

Then there are some n/k agents S and some y 2 M
such that 8i 2 S, (1 +

p
2) · d(i, y) < Di(X).

Let ry = maxi2S d(i, y)

There must be some x 2 X such that the radius ry ball
about x captured some i 2 S.



Upper Bound

y x

i⇤

ry

i

But then there must be some i⇤ 2 S for whom the
distances to y and x are comparable.

The worst case bound works out to 1 +
p
2.



Local Capture Algorithm
Problem. Greedy Capture may not find an exact proportional 
clustering, even when one exists.

Solution. We introduce Local Capture, a local search 
heuristic for finding more proportional solutions. 

• Input a target value of ρ, and an arbitrary set X of k centers 
• While the solution is still not ρ-proportional: 

• Add the center y of the blocking to X 
• Remove the center from X that is the least utilized (i.e., 

is the closest center for the fewest points)



Constrained Optimization
Problem. Although the greedy capture algorithm is
approximately proportional, it may choose an ine�-
cient clustering, even when there is an e�cient pro-
portional solution.

Result 2. Suppose there is a ⇢-proportional clustering
with total cost c. In polynomial time in n, we can
compute a O(⇢)-proportional clustering with k-median
objective at most 8c.

(The approach is based on LP rounding, adapting methods 
from Charikar et al., 2002)



Sampling

Observation. Proportionality is well preserved under
random sampling.

Problem. Running greedy capture, or even checking
whether a clustering is proportional, takes ⌦(n2) time.

Result 3. We design Monte Carlo style randomized al-
gorithms for computing and auditing an approximately
proportional clustering in Õ

�
m
✏2

�
time (recall m is the

number of centers, sometimes just n).



Experiment - Diabetes 
This data set contains 768 diabetes patients, recording features like glucose, blood 
pressure, age and skin thickness. These are our centers and data points, i.e., M = N.



Experiment - KDD
The KDD cup 1999 data set has information about sequences of TCP packets and contains 
many outliers. We work with a subsample of 100,000 data points, and a further subsample 
of 400 points for M.



Open Questions
• Can we close the approximation gap?

• Is there a more simple, efficient, and intuitive way to optimize 
the k-median objective subject to approximate proportionality?

• What are the right other competing fairness notions for 
clustering?

• Can fairness as proportionality be adapted for supervised 
learning tasks like classification? 
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