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This talk is not about . . .

Not about learning to find SAT solutions [Selsam et al. 2019]

- but about learning both constraints and solution from examples

Not about using DL and SAT in a multi-staged manner

- doing so requires prior knowledge on the stucture and constraints

- further, current SAT solvers cannot accept probability inputs
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- A layer that enables end-to-end learning of both the constraints
and solutions of logic problems within deep networks...




This talk is about

- A layer that enables end-to-end learning of both the constraints
and solutions of logic problems within deep networks...

- A smoothed differentiable (maximum) satisfiability solver
that can be integrated into the loop of deep learning systems.

SATNet: MAXSAT SDP solver as a layer

MAXSAT SDP
(weight S)
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Review of SAT problems

Example SAT problem:

U9 N\ (’Ul V _l’l)g) N (’UQ V _|’U3)

Y
0 1 0 U2
S=11 -1 0 vV
0 1 —1 v V s

Typical SAT: Clause matrix given, find satisfying assignment
Our setting: Clause matrix is parameters of the layer (to be learned)
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MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

SAT: Find feasible v; s.t. v A (11 V =) A (19 V —3) -1
MAXSAT: maximize # of satisfiable clauses

Relax the binary variables to smooth & continuous spheres

v € {41, -1} L |y =1, v; € RV 2% ||y = 1, v € RF
Semidefinite relaxation (Goemans-Wiliamson, 1995), X = VTV
minimize (S7S,X), st X =0, diag(X) = 1.
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SATNet: MAXSAT SDP as a layer

SDP relaxation
(weight S)

Complexity:
O(n%)

Primal-dual
interior point

method for SDP Too expensive
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Fast solution to MAXSAT SDP approximation

Efficiently solve via low-rank factorization X = VIV, V € R¥>*", || = 1
(a.k.a. Burer-Monteiro method), and block coordinate descent iters

v; = —normalize( VS Ts; — ||sil|*v;).

For k > +/2n, the non-convex iterates are guaranteed to converge to
global optima of SDP [Wang et al., 2018; Erdogdu et al., 2018]

Complexity reduced from O(n°loglog %) of interior point methods to
O(n'?mlogl) of our method, where m is #clauses.
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Differentiate through the optimization problem
When converged, the procedure satisfies the fixed-point equation
v; = —normalize( VS s; — ||sil|*v;), Vi

The fixed-point equation of the block coordinate descent provides an
implicit function definition of the solution [Amos et al. 2017]

Fi(S, V(8S)) = v; + normalize( VS Ts; — ||sil|*v;) = 0, Vi
Thus, can apply implicit function theorem on the total derivatives

OF(5.V(S) _, _, OF(S.V) 0F(.V) ov _

—

08 08 oV K
Solve the above linear system of 0 v / 05 to backprop



SATNet: MAXSAT SDP as a layer
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Other ingredients in SATNet

Low-rank regularization on §

- Doubly-exponentially many possible Boolean functions!

- Low-rank = Regularize the complexity through number of clauses

Auxiliary variable (hidden nodes)

- Only SDP with diagonal constraints, limiting representation

- Adding auxiliary variable (gadget) increases representation power
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lllustration: Learning Parity from single bit
supervision

- Parity problem is surprisingly hard for most deep networks to learn
[Shalev-Swartz et al., 2017]

- Chained (recurrent) SATNet-based network learns parity function for
up to length 40 strings from 10K examples
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lllustration: Learning Sudoku
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lllustration: Learning Sudoku

- Learning 9x9 Sudoku from 9K examples
- Single SATNet layer on
one-hot-encoded input puzzles
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- Learning 9x9 Sudoku from 9K examples

- Single SATNet layer on
one-hot-encoded input puzzles

- Free parameters are S matrix of clauses,
randomly initialized
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lllustration: Learning Sudoku

- Learning 9x9 Sudoku from 9K examples

5|3 7 5/3/4|6|7/8[9|1|2
“oal 6| peapasizes - Single SATNet layer on
8 6 3 8/5/9[7]6/1]4]2]3 .
I 1M EY gy C HO E E e one-hot-encoded input puzzles
el % Dethaieite - Free parameters are S matrix of clauses,
8 79 3/4/5|2/8/6[1|7]|9 g .
randomly initialized
Model Train Test Model Train Test
ConvNet 72.6% 0.04% ConvNet 0% 0%

SATNet (ours) 99.8% 98.3%

SATNet (ours) 99.7% 98.3%

Original Sudoku.

Permuted Sudoku.



lllustration: MNIST Sudoku
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lllustration: MNIST Sudoku

0|6 127|020
o2 o|608|250 0+ I I
BllolobY|CD &
ocolo R a|7To0
4 9 Hoéoloa s 0» —~ + - =~ -~ SATNet —Loss
£0 V|3 o[A 00
0OdOG 7[00
| 70[0 0 O 02 ? P E-E
cs0looolat ¢ - _
- Getting example “correct” requires
Model Train  Test correct Sudoku solution and predicting
ConvNet 031% 0% all MNIST test digits correctly

SATNet (ours) 93.6% 63.2% - 8597 accuracy on correct ConvNet input
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Code and Colab

Code available at https://github.com/locuslab/SATNet

£ Learning and Solving Sudoku via SATNet.ipynb

File Edit View Insert Runtime

CODE TEXT 4 CELL

Table of contents Code snippets

Introduction to SATNet

Building SATNet-based Models

The Sudoku Datasets
Sudoku
One-hot encoded Boolean Sudoku
MNIST Sudoku

The 9x9 Sudoku Experiment

¥ CELL

Files

Tools

X

Help

C»

!git clone https://github.com/locuslab/SATNet
tcd SATNet
Ipython setup.py develop > install.log 2>&l

Cloning into 'SATNet'...

remote: Enumerating objects: 47, done.

remote: Counting objects: 100% (47/47), done.

remote: Compressing objects: 100% (36/36), done.
remote: Total 47 (delta 12), reused 43 (delta 8), pack
Unpacking objects: 100% (47/47), done.

/content/SATNet

!wget -cq powel.tw/sudoku.zip && unzip -gg sudoku.zip
!wget -cq powel.tw/parity.zip && unzip -gg parity.zip

import os
import shutil

.
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Conclusion
We presented
- SATNet, the first differentiable MAXSAT solver as a layer

- can be integrated into the loop of deep learning systems
whenever neurons have logical constraints, and it learns both
constraints and solutions solely from examples

Possible extensions:
- Incorporating known rules into the system

- Exploiting structures of the clause matrix

Poster at Pacific Ballroom #26



