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IMAGE VS. GRAPH
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- Image can be treated as a special graph with well-defined locality. There is
no locality information on normal graph, which makes it hard to define
pooling and un-pooling operation on graph data.

* Node classification problems can be considered as image segmentation
problems. Both predict for each node or pixel.
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U-NET ON GRAPH
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Pooling layer
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Un-pooling layer
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https://Imb.informatik.uni-freiburg.de /people /ronneber /u-net/
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https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

GRAPH POOLING LAYER (GPOOL)
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GRAPH UN-POOLING LAYER (GUNPOOL)
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gUnpool layer uses position information from gPool layer to

reconstruct original graph structure.
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GRAPH U-NET
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NETWORK REPRESENTATION LEARNING RESULTS

Results on node classification tasks:

Models Cora Citeseer Pubmed
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
GAT (Velickovic et al., 2017) 83.0 £ 0.7% 725 +0.7% 79.0 £ 0.3%
g-U-Net (Ours) 84.4 + 0.6% 73.2 +20.5% 79.6 + 0.2%
Results on graph classification tasks:

Models D&D PROTEINS COLLAB

PSCN (Niepert et al., 2016) 76.27% 75.00% 72.60%
DGCNN (Zhang et al., 2018) 79.37% 76.26% 73.76%
DiffPool-DET (Ying et al., 2018) 75.47% 75.62% 82.13%
DiffPool-NOLP (Ying et al., 2018) 79.98% 76.22% 75.58%
DiffPool (Ying et al., 2018) 80.64% 76.25% 75.48%
g-U-Nets (Ours) 82.43% 77.68% 77.56%
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| GRAPH U-NETS
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