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• Take sets (variable lengths, order does not matter) as inputs

• Application includes multiple instance learning, point-cloud classification, 
few-shot image classification, etc.

• Deep Sets: a simple way to construct permutation invariant set-input nerual 
networks, but does not effectively modeling interactions between elements 
in sets.

Set-input problems and Deep Sets [Zaheer et al., 2017]

f(X) = ρ(∑
x∈X

ϕ(x)) .



• Use multihead self-attention [Vaswani et al., 2017]  to encode interactions between 
elements in a set.

• Note that a self-attention is permutation equivariant,

Attention based set operations
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SelfAtt(X) = Att(X, X) .

SelfAtt(π ⋅ X) = π ⋅ SelfAtt(X)

Att(X, Y ) = softmax( XWqW⊤
k Y⊤

d )YWv .



• Multihead attention block (MAB): residual connection + multihead QKV 
attention followed by a feed-forward layer

• Self attention block (SAB): MAB applied in self-attention way, 

• Induced self-attention block (ISAB): introduce a set of trainable inducing 
points to simulate self-attention,               with       inducing points.     

Set transformer - building blocks

MAB(X, Y ) = FFN(WX + Att(X, Y )) .

SAB(X) = MAB(X, X) .
O(n2)

O(nm) m
ISAB(X) = MAB(X, MAB(I, X)) .
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• Pooling by multihead attention (PMA): instead of a simple sum/max/min 
aggregation, use multihead attention to aggregate features into a single 
vector.

• Introduce a trainable seed vector, and use it to produce one output vector.

• Use multiple seed vectors and apply self-attention to produce multiple 
interacting outputs (e.g., explaining away)

Set transformer - building blocks

o = PMA1(Z) = MAB(s, Z)

O = SelfAtt(PMAk(Z)) = SelfAtt(MAB(S, Z)) S = [s⊤
1 , …, s⊤

k ] .



• Encoder: a stack of permutation-equivarinat ISABs.

• Decoder: PMA followed by self-attention to produce outputs.

Set transformer - architecture

x⊤
1

x⊤
2

x⊤
n

⋮

X

ISAB1 ISAB2 ISABL…
z⊤
1

z⊤
2

z⊤
n

⋮

Z

z⊤
1

z⊤
2

z⊤
n

⋮

s⊤
1

s⊤
k

⋮
MAB(S, X )

o⊤
1

o⊤
k

⋮SAB1 SABL…



• Amortized clustering - learn a mapping from dataset to clustering

Experiments

Deep Sets

Set transformer



• Works well for various tasks such as unique character counting, amortized 
clustering, point cloud classification, and anomaly detection

• Generalize well with small number of inducing points

• Attentions both in encoder (ISAB) and decoder (PMA + SAB) are important 
for the performance.

Experiments



• New set-input neural network architecture 

• Can efficiently model pairwise/higher order interactions between elements in 
sets

• Demonstrated to work well for various set-input tasks

• Code available at https://github.com/juho-lee/set_transformer

Conclusion

https://github.com/juho-lee/set_transformer
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