
BayesNAS: A Bayesian Approach for Neural Architecture Search

Hongpeng Zhou1, Minghao Yang1, Jun Wang2, Wei Pan1

1. Department of Cognitive Robotics, Delft University of Technology, Netherlands
2. Department of Computer Science, University College London, UK
Correspondence to: Wei Pan <wei.pan@tudelft.nl>

Outline

• What we achieve

• Why we study

• How to realize

• Experiment

• Conclusion and future work

Outline

• What we achieve

• Why we study

• How to realize

• Experiment

• Conclusion and future work

What are the highlights of this paper?

• Fast:
Find the architecture on CIFAR-10 within only 0.2 GPU days using a single GPU.

• Simple:
Train the overparameterized network for only one epoch then update the architecture.

• First Bayesian method for one-shot NAS:
Apply Laplace approximation;
Propose fast Hessian calculation methods for convolutional layers.

• Dependencies between nodes:
Model dependencies between nodes ensuring a connected derived graph.

What?

Outline

• What we achieve

• Why we study

• How to realize

• Experiment

• Conclusion and future work

• Why employ Bayesian learning?
• It could prevent overfitting and does not require tuning a lot of hyperparameters;

• Hierarchical sparse priors can be used to model the architecture parameters;

• The priors can promote sparsity and model the dependency between nodes.

[1] MacKay, D. J. A practical bayesian framework for backpropagation networks. Neural computation, 4(3):448–472, 1992b.

[2] LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain damage. In Advances in neural information processing systems, pp. 598–605, 1990.

[3] Botev, A., Ritter, H., and Barber, D. Practical gauss-newton optimisation for deep learning. ICML, 2017.

• Why apply Laplace approximation?
• Easy implementation;

• Close relationship between Hessian metric and network compression;

• Acceleration effect to training convergence by second order optimization algorithm.

• Why use one shot method?
• Reduce search time without separate training, compared with reinforcement learning,

neuroevolutionary approach;

• NAS is treated as Network Compression.

Why?

• Why consider dependency?

• Most current one-shot methods disregard the dependencies between a node and its
predecessors and successors, which may results in a disconnected graph.

Figure1. Disconnected graph
caused by disregard for
dependency

Figure2: Expected
connected graph

If node 2 is redundant, the expected
graph has no connection from node
2 to 3 and from node 2 to 4.

• Example:

Why?

Outline

• What we achieve

• Why we study

• How to realize

• Experiment

• Conclusion and future work

• How to realize dependency?

Proposition for Dependency: there is information flow from node j to k if and only if at least one

operation of at least one predecessor of node j is non-zero and 𝑤𝑗𝑘
𝑜 is also nonzero.

A multi-input-multi-output motif is abstract the building block of any Directed Acyclic Graph (DAG).
Any path or network can be constructed by this motif, as shown in Figure4.(c).

Figure3. An illustration for dependency.

(a) (b) (c) (d)

Specific explanation:

• Figure3(a): predecessor’s (𝑒12) has superior

control over its successors (𝑒23 and 𝑒24);

• Figure3(b): design switches 𝑠12, 𝑠23 and 𝑠24 to
determine "on or off" of the edge;

• Figure3(d): prioritize zero operation over other
non-zero operations by adding one more node i’
between node i and j.

How?

Motif

• Model architecture parameters with hierarchical automatic relevance determination (HARD)
priors.

• The cost function is maximum likelihood over the data D with regularization whose intensity is
controlled by the reweighted coefficient ω:

• How to apply Bayesian learning search strategy?

• How to compute the Hessian?
• By converting convolutional layers to fully-connected layers, a recursive and efficient method is

proposed to compute the Hessian of convolutional layers and architecture parameter.

Loss on data Regularization on
architecture parameter

Regularization on
Network parameter

How?

• By enforcing various structural sparsity, extremely sparse models can be obtained without accuracy
loss.

• This can be effortlessly integrated into BayesNAS to find sparse architecture for resource-limited
hardware.

Figure4. Structure sparsity

• Extension to Network Compression

Byproduct:

Outline

• What we achieve

• Why we study

• How to realize

• Experiment

• Conclusion and future work

• CIFAR10-experiment setting:

• The setup for proxy tasks follows DARTS and SNAS;
• The backbone for proxyless search is PyramidNet;
• Apply BayesNAS to search the best convolutional cells/optimal paths in a complete network;
• A network constructed by stacking learned cells/paths is retrained.

[4] Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable architecture search. ICLR, 2019b.

[5] Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: stochastic neural architecture search. ICLR, 2019.

[6] Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct neural architecture search on target task and hardware. ICLR, 2019.

[7] Cai, H., Yang, J., Zhang, W., Han, S., and Yu, Y. Path-level network transformation for efficient architecture search. ICML, 2018.

Figure 5. Normal and reduction cell found in proxy task Figure 6. Tree cells found in proxyless task

Experiment:

• Competitive test error rate against state-of-the-art techniques.
• Significant drop in search time. less search time

Experiment:
• CIFAR10-result:

• Transferability to ImageNet :

A network of 14 cells is trained for 250 epochs with batch size 128:

Experiment:

Outline

• What we achieve

• Why we study

• How to realize

• Experiment

• Conclusion and future work

• First Bayesian approach for one-shot NAS: BayesNAS can prevent overfitting, promote
sparsity and model dependencies between nodes ensuring a connected derived graph.

• Simple and fast search: BayesNAS is an iteratively re-weighted l1 type algorithm. Fast
Hessian calculation methods are proposed to accelerate the computation. Only one
epoch is required to update hyper-parameters.

• Our current implementation is still inefficient by caching all the feature maps in
memory. The searching time could be future reduced by computing Hessian with
backpropagation.

Conclusion and future work:

Paper: 3866
Contact: Wei Pan <wei.pan@tudelft.nl>

Thank you!

