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Challenges: 

 High dimensional observations

 Partially observable 

 Nonlinear dynamics

 Uncertainty 

How can we propagate uncertainty through RNNs without approximations?

Recurrent Kalman Networks (RKN): Recurrent cell based on Kalman filter 

(Deep Learning) Solutions:

 CNNs

x Variational Inference

(approximation errors)

 RNNs
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Make backpropagation through Kalman filter feasible?

 Locally linear transition models, even for highly nonlinear systems

 High dimensional latent spaces

 Factorized state representation to avoid expensive and unstable matrix inversions
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Factorized Representation



 diagonal matrices

 correlates parts

Results in simplified Kalman Update

 No matrix inversion

 Instead only pointwise operations 

 Assumptions not restrictive since latent space is learned

Observation Model



 Splits latent state

1. Observable part

2. Memory part 

Makes inference and back-propagation feasible
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Quad Link Pendulum
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 State (4 joint angles + velocity)

 Highly nonlinear dynamics

 Links occlude each other

 Estimate joint angles of all 4 links

 Observations: 48x48 pixel images
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RKN LSTM GRU

Log 

Likelihood

14.534 11.960 10.346

RMSE 0.103 0.118 0.121

 Significantly better uncertainty estimate 

(higher log-likelihood)

 Better prediction (smaller RMSE)

 State (4 joint angles + velocity)

 Highly nonlinear dynamics

 Links occlude each other

 Estimate joint angles of all 4 links

 Observations: 48x48 pixel images
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Summary & Conclusion
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Recurrent Kalman Networks…

 … scale to real world systems

 … allow direct state estimation from 

images

 … use uncertainty in a principled manner

to handle noise

 … can be trained end-to-end without

approximations

Additional Experiments

 Pendulum 

 Image Imputation 

 KITTI-Dataset for visual odometry

 Prediction for real pneumatic joint

 Comparison to recent approaches

 KVAE [1], E2C [2], Structured Inference Networks [3]

 Code available  
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