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Why to Impute?
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If there is a factory over there

Why to Impute?

« We should go after it!
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Events...
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distribution of the complete

Events...
 We need to know the
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To Impute the Missing Events...

| | | | , * We need to know the
i i i i i distribution of the complete

______________________________________

sequences

Neural Hawkes process (NHP)
(Mei & Eisner 2017 — NeurlPS)
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To Impute the Missing Events...

| | | | , « Where do we get the complete
i i i i i data to train its parameters?
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To Impute the Missing Events...

| | | | , « Where do we get the complete
i i i i i data to train its parameters?

______________________________________

, | | : « Game logs shown to us after
the game (e.g. replay)
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To Impute the Missing Events...
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* We also need to know the
missingness mechanism

« Don’t propose anything which
we know won'’t be missing
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To Impute the Missing Events...

* We also need to know the
missingness mechanism

* Don’t propose anything which
we know won'’t be missing

* In-view events won't be missing

+ Qut-of-view events must be missing
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To Impute the Missing Events...
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To Impute the Missing Events...
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To Impute the Missing Events...

p(z | x) X pnap (X U Z)Pmiss(Z | X U 2)
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Challenge

« Complicated PNHP
 Exact inference is intractable
? « How about Monte Carlo?

p(z | x) ="




Sequential Monte Carlo

+ Sample from ¢(z | x)
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Sequential Monte Carlo

+ Sample from ¢(z | x)

/A
« Weight them by w
w x p(z | x)/q(z | x)
Z)
Z3
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Sequential Monte Carlo

+ Sample from ¢(z | X)
« Weight them by w

wocp(z | x)/q(z | x)

VAl

Z

Down-weighted! Too late!
No time to produce tanks!
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Sequential Monte Carlo

+ Sample from ¢(z | X)
« Weight them by w

wocp(z | x)/q(z | x)

VAl

Z
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Sequential Monte Carlo

« Use the trained NHP

M Infinitesimal probability of @88
(like a Poisson intensity)
/
0 o -
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Sequential Monte Carlo
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Sequential Monte Carlo

 Use the trained NHP
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A A f Low! No factory buiit!
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Sequential Monte Carlo

 Use the trained NHP

What produced the tanks?!

>
i1 to
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Sequential Monte Carlo

 Use the trained NHP
* Take future into account

Consider future for sampling!

>
i1 to
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Sequential Monte Carlo

 Use the trained NHP
* Take future into account

Read future with another LSTM

>
i1 to
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Sequential Monte Carlo

 Use the trained NHP
* Take future into account

% .<
Improved proposa
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Sequential Monte Carlo

 Use the trained NHP
* Take future into account
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Sequential Monte Carlo
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Sequential Monte Carlo
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Sequential Monte Carlo
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Sequential Monte Carlo

95



Sequential Monte Carlo

* Particle filtering  Particle smoothing
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More in Our Paper

* How to train q(z | X) for particle smoothing
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* How to train q(z | X) for particle smoothing
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More in Our Paper

How to train g\ Z | X ) for particle smoothing

Optimal transport distance

Minimum Bayes risk decoding

Positive experimental results

particle smoothing
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