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• If there is a factory over there
• We should go after it!
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• We need to know the 
distribution of the complete 
sequences

pNHP( )

Neural Hawkes process (NHP)
(Mei & Eisner 2017 – NeurIPS)
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• Where do we get the complete 
data to train its parameters?

• Game logs shown to us after 
the game (e.g. replay)

pNHP( )
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0 t1 t2

• We also need to know the 
missingness mechanism

• Don’t propose anything which 
we know won’t be missing 

• In-view events won’t be missing
• Out-of-view events must be missing

pNHP( )



To Impute the Missing Events…

31

0 t1 t2

pNHP( )

pmiss( )



To Impute the Missing Events…

32

0 t1 t2

pNHP( )

pmiss( )

x



To Impute the Missing Events…

33

0 t1 t2

pNHP( )

pmiss( )

x

z



To Impute the Missing Events…

34

0 t1 t2

x

?z ? ? ?



To Impute the Missing Events…

35

0 t1 t2

x

?z ? ? ?
p(z | x) / pNHP(x t z)pmiss(z | x t z)



• Complicated 
• Exact inference is intractable
• How about Monte Carlo?

Challenge

36

0 t1 t2

x

pNHP

?z ? ? ?
p(z | x) = ?
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q(z | x)

w / p(z | x)/q(z | x)
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• Sample from
• Weight them by 

q(z | x)

w / p(z | x)/q(z | x)
w
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• Sample from
• Weight them by 

q(z | x)

w / p(z | x)/q(z | x)
w



• Use the trained NHP

Sequential Monte Carlo

43

0 t1 t2
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• Particle filtering • Particle smoothing

Sequential Monte Carlo
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• How to train                  for particle smoothing 
• Optimal transport distance

q(z | x)
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q(z | x)
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• How to train                  for particle smoothing 
• Optimal transport distance
• Minimum Bayes risk decoding
• Positive experimental results

q(z | x)
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