Deep Factors for Forecasting

Yuyang Wang, Alex Smola, Danielle C. Maddix, Jan Gasthaus, Dean Foster, Tim Januschowski

Time Series Prediction ... at Amazon

servers forecast and used

Capacity planning

Market entry

Topology Planning

Time Series Prediction ... at Amazon

- Predict demand for each product available at Amazon
- Problem
 - How many items to order
 - · Where to order
 - When to mark down (ugly sweaters after Christmas)

Estimate future observations (univariate case)

$$p(z_{t+1} | (x_1, z_1), ...(x_t, z_t), x_{t+1})$$

Make optimal decisions

$$\operatorname{argmin}_{a}\mathbb{E}_{z_{t+1}|\operatorname{past}}[l(a,z_{t+1},\operatorname{past})]$$

But in reality ...

Two old ideas

- Easy to add more
- Simple models
- Doesn't work so well

- Model all time series jointly and globally
 - Works better
 - Impossible to add more
 - Complex model

... make a good one

Local model

- Reads from global model
- Updates local state

- Global model
 - Nonlinear backbone
 - Nonparametric
- Theorem (deFinetti for time series)

For an **exchangeable** distribution over time series the joint distribution can be written as a local/global model.

$$p(x_{1,...,T}^{i} \text{ for } i \in \{1,...N\}) = \int dg \prod_{t=1}^{T} p(g_{t} | g_{t-1},...g_{1}) \prod_{i=1}^{N} p(x_{t}^{i} | x_{t-1}^{i},...,x_{t}^{i}, g_{t},...g_{1})$$

Corresponding result for trees, too (via Tree-deFinetti)

Latent variable autoregressive deep

- Global model
 - Nonlinear backbone
 - Nonparametric
- Local model
 - Reads from global model
 - Updates local state

Works well in practice

Latent variable autoregressive deep

- Global model
 - Nonlinear backbone
 - Nonparametric (e.g. LSTM) to handle complex dependence
- Local model
 - Reads from global model
 - Use LDS / Gaussian Process for speed and uncertainty characterization
- Inference
 - Exact for Gaussian
 - VAE for other likelihoods

We are not the first to realize this ...

[Fraccaro SRNN et al., 2016]

VRNN/SSL/LSTM-LDA [Chung et al., DMM [Krishnan 2015; Zaheer et al., et al., 2017, 2017; Zheng et al., 2017]

2015]

KVAE/DVBF [Fraccaro et al., 2017; Karl et al., 2017]

Faster, stronger, better (than previous work)

When compared to pure RNN forecaster

- Lower uncertainty
- Faster
- More accurate

Faster, stronger, better (than previous work)

When compared to SOTA (DeepAR and MQ-RNN)

- Less variance
- More accurate

To be available in GluonTS: gluon-ts.mxnet.io

Featuring NN-based Forecasting models

- DeepAR [Valentin et. al., 2017]
- MQ-DNN [Wen et. al., 2017]
- Deep State Space Models
 [Rangapuram et. al., 2018]
- Spline Regression RNN
 [Gasthaus et. al., 2019]
- GPs, KF, LDS
- More ...

Come to our talk at the Time Series Workshop on Friday!

