Generative Adversarial User Model for Reinforcement Learning Based Recommendation System

Xinshi Chen¹, Shuang Li¹, Hui Li², Shaohua Jiang², Yuan Qi², Le Song^{1,2}

¹Georgia Tech, ²Ant Financial

ICML 2019

RL for Recommendation System

- A user's interest evolves over time based on what she observes.
- Recommender's action can significantly influence such evolution.
- A RL based recommender can consider user's long term interest.

1. User is the **environment** — Training of **RL** policy requires lots of interactions with users

e.g.

- (1) For **AlphaGo Zero**, **4.9 million** games of self-play were generated for training.
- 2) RL for **Atari** game takes more than **50 hours** on GPU for training.
- 2. The **reward** function (a user's interest) is unknown

Our solution

We propose

- A Generative Adversarial User Model
 - to model user's *action*
 - to recover user's *reward*
- Use GAN User Model as a simulator to pre-train the RL policy offline

Generative Adversarial User Model

2 components:

User's **reward** $r(s^t, a^t)$

- a^t is clicked item.
- s^t is user's experience (state).

User's **behavior** $\phi(s^t, \mathcal{A}^t)$

- \mathcal{A}^t contains items displayed by the system.
- act $a^t \sim \phi$ to maximize her expected reward.
- $\phi^*(s^t, \mathcal{A}^t) = \arg\max_{\phi} \mathbb{E}_{\phi}[r(s^t, a^t)] R(\phi)/\eta$

Generative Adversarial Training

In analogy to GAN:

- φ (behavior) acts as a generator
- r (reward) acts as a discriminator

Jointly learned via a *mini-max formulation*:

$$\min_{r} \max_{\phi} \mathbb{E}_{\phi} \left[\sum_{t=1}^{T} r(s^t, a^t) \right] - R(\phi) / \eta - \sum_{t=1}^{T} r(s^t_{true}, a^t_{true})$$

Model Parameterization

2 architectures for aggregating historical information (i.e. state s^t)

(1) LSTM

(2) Position Weight

Set Recommendation RL policy

$$a_1^*, a_2^*, \dots a_k^* = \arg\max_{a_1, \dots, a_k} Q(s^t, a_1, a_2, \dots, a_k)$$

combinatorial action space $\binom{K}{k}$ \longrightarrow Intractable computation!

Set Recommendation RL policy

 $a_k^* = \arg\max_{a_k} Q^{k*}(s^t, a_1^*, a_2^*, ..., a_k)$

We design a cascading Q network to compute the optimal action with *linear* complexity:

$$a_1^*, a_2^*, \dots a_k^* = \arg\max_{a_1, \dots, a_k} Q(s^t, a_1, a_2, \dots, a_k)$$

$$a_1^* = \arg\max_{a_1} \mathbf{Q}^{1*}(s^t, a_1)$$

$$a_1^* = \arg\max_{a_1} \mathbf{Q}^{1*}(s^t, a_1) := \max_{a_{2:k}} Q(s^t, a_1, a_{2:k})$$

$$a_2^* = \arg\max_{a_2} \mathbf{Q}^{2*}(s^t, a_1^*, a_2)$$

$$\mathbf{Q}^{2*}(s^t, a_1, a_2) := \max_{a_{3:k}} Q(s^t, a_1, a_2, a_{3:k})$$
...

Set Recommendation RL policy: Cascading DQN

Experiments

Predictive Performance of User Model

	(1) MovieLens	(2) LastFM	(6) Ant Financial	
Model	prec(%)@1 prec(%)@2	prec(%)@1 prec(%)@2	prec(%)@1 prec(%)@2	
IKNN	$38.8(\pm 1.9) \ 40.3(\pm 1.9)$	$20.4(\pm 0.6)$ $32.5(\pm 1.4)$	$20.6(\pm 0.2)$ $32.1(\pm 0.2)$	
S-RNN	$39.3(\pm 2.7) \ 42.9(\pm 3.6)$	$9.4(\pm 1.6)$ $17.4(\pm 0.9)$	$32.2(\pm 0.9) \ 40.3(\pm 0.6)$	
SCKNNC	$49.4(\pm 1.9)$ $51.8(\pm 2.3)$	$21.4(\pm 0.5)$ $26.1(\pm 1.0)$	$34.6(\pm 0.7)$ $43.2(\pm 0.8)$	
XGBOOST	$66.7(\pm 1.1) \ 76.0(\pm 0.9)$	$10.2(\pm 2.6) \ 19.2(\pm 3.1)$	$41.9(\pm 0.1)$ $65.4(\pm 0.2)$	
DFM	$63.3(\pm0.4)$ $75.9(\pm0.3)$	$10.5(\pm0.4)$ $20.4(\pm0.1)$	$41.7(\pm 0.1)$ $64.2(\pm 0.2)$	
W&D-LR	$61.5(\pm 0.7)$ $73.8(\pm 1.2)$	$7.6(\pm 2.9) 16.6(\pm 3.3)$	$37.5(\pm 0.2) 60.9(\pm 0.1)$	
W&D-CCF	$65.7(\pm0.8)$ $75.2(\pm1.1)$	$15.4(\pm 2.4)$ $25.7(\pm 2.6)$	$37.7(\pm0.1)$ $61.1(\pm0.1)$	
GAN-PW	$66.6(\pm 0.7)$ $75.4(\pm 1.3)$	$24.1(\pm0.8)$ $34.9(\pm0.7)$	$41.9(\pm0.1)$ $65.8(\pm0.1)$	
GAN-LSTM	67.4 (± 0.5) 76.3 (± 1.2)	$24.0(\pm 0.9)$ $34.9(\pm 0.8)$	$42.1(\pm0.2) 65.9(\pm0.2)$	

Recommendation Policy Based On User Model

k = 3			k = 5	
model	reward	ctr	reward	ctr
W&D-LR	$14.46(\pm0.42)$	$0.46(\pm 0.01)$	$15.18(\pm0.38)$	$0.48(\pm 0.01)$
W&D-CCF	$19.93(\pm 1.09)$	$0.62(\pm 0.03)$	$20.94(\pm 1.03)$	$0.65(\pm 0.03)$
GAN-Greedy	\	\	$22.97(\pm 1.22)$	\
GAN-RWD1	$22.17(\pm 1.07)$	$0.68(\pm 0.03)$	$25.15(\pm 1.04)$	$0.78(\pm 0.03)$
	\	\ /	$23.19(\pm 1.17)$	/
GAN-CDQN	$24.05(\pm 0.98)$	$0.74(\pm 0.03)$	$25.36(\pm 1.10)$	$0.77(\pm 0.03)$
DQN-Off	$20.31(\pm 0.14)$	$0.63(\pm 0.01)$	$21.82(\pm0.08)$	$0.67(\pm 0.01)$

Experiments

Cascading-DQN policy pre-trained over a GAN User Model can quickly achieve a high CTR even when it is applied to a new set of users.

Figure: Comparison of the averaged click rate averaged over 1,000 users under different recommendation policies. X-axis represents how many times the recommender interacts with online users. Y-axis is the click rate. Each point (x,y) means the click rate y is achieved after x times of user interactions.

Thanks!

Poster: Pacific Ballroom #252, Tue, 06:30 PM

Contact: xinshi.chen@gatech.edu