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RL for Recommendation System

• A user’s interest evolves over time based on what she observes.

• Recommender’s action can significantly influence such evolution.

• A RL based recommender can consider user’s long term interest.
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Challenges
1. User is the environment

2. The reward function (a user’s interest) is unknown

Training of RL policy requires 
lots of interactions with users
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e.g. 
(1) For AlphaGo Zero, 4.9 million games of self-play were generated for training. 
(2) RL for Atari game takes more than 50 hours on GPU for training.



Our solution
We propose

• A Generative Adversarial User Model 

- to model user’s action

- to recover user’s reward
• Use GAN User Model as a simulator to pre-train the RL policy offline 
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Generative Adversarial User Model
2 components:
User’s reward 𝒓(𝒔𝒕, 𝒂𝒕)

• 𝑎- is clicked item.
• 𝑠- is user’s experience (state).

User’s behavior 𝝓(𝒔𝒕,𝒜𝒕)

• 𝒜𝒕 contains items displayed by the system.
• act 𝑎- ∼ 𝜙 to maximize her expected reward.

• 𝜙∗(𝑠-,𝒜-) = argmax
:

𝔼: 𝑟 𝑠-, 𝑎- − 𝑅 𝜙 /𝜂

𝒓(𝒔𝒕, 𝒂𝒕)
reward
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Generative Adversarial Training
In analogy to GAN:

• 𝝓 (behavior) acts as a generator

• 𝒓 (reward) acts as a discriminator 

Jointly learned via a mini-max formulation:
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Model Parameterization
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2 architectures for aggregating historical information (i.e. state 𝑠-)

(1) LSTM

(2) Position Weight



Set Recommendation RL policy

display 𝑘 items
all available 𝐾 items

set recommendation 

combinatorial action space 𝑲𝒌

𝑎F∗ 𝑎N∗ 𝑎O∗

…

Intractable computation!

𝑎F∗, 𝑎N∗ , … 𝑎O∗ = arg max
QR,…,QS

𝑄(𝑠-, 𝑎F, 𝑎N, … , 𝑎O)



Set Recommendation RL policy

𝑸𝟏∗ 𝑠-, 𝑎F ≔ max
QX:S

𝑄(𝑠-, 𝑎F, 𝑎N:O)

𝑸𝟐∗ 𝑠-, 𝑎F, 𝑎N ≔ max
Q[:S

𝑄(𝑠-, 𝑎F, 𝑎N, 𝑎\:O)

𝑎F∗, 𝑎N∗ , … 𝑎O∗ = arg max
QR,…,QS

𝑄(𝑠-, 𝑎F, 𝑎N, … , 𝑎O)

decompose

𝑎F∗ = argmax
QR

𝑸𝟏∗(𝑠-, 𝑎F)

𝑎N∗ = argmax
QX

𝑸𝟐∗(𝑠-, 𝑎F∗, 𝑎N)

……

𝑎O∗ = argmax
QS

𝑸𝒌∗(𝑠-, 𝑎F∗, 𝑎N∗ , … , 𝑎O)

We design a cascading Q network to compute the optimal action 
with linear complexity:



Set Recommendation RL policy: Cascading DQN

Argmax

𝑎1∗ 𝑎2∗

…

𝑎𝑘∗

Argmax

𝑠𝑎1 𝑎2 𝑎𝑘

…

Argmax

𝑄1(𝑠, 𝑎1; 𝜃1) 𝑄2(𝑠, 𝑎1∗, 𝑎2; 𝜃2) 𝑄𝑘(𝑠, 𝑎1:𝑘−1∗ , 𝑎𝑘; 𝜃𝑘）



Experiments
Predictive Performance of User Model

Recommendation Policy Based On User Model



Experiments

Cascading-DQN policy pre-trained over a GAN User Model can quickly 
achieve a high CTR even when it is applied to a new set of users.
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