
Generative Adversarial User Model
for Reinforcement Learning Based

Recommendation System

Xinshi Chen1, Shuang Li1, Hui Li2, Shaohua Jiang2, Yuan Qi2, Le Song1,2

1Georgia Tech, 2Ant Financial
ICML 2019



RL for Recommendation System

• A user’s interest evolves over time based on what she observes.

• Recommender’s action can significantly influence such evolution.

• A RL based recommender can consider user’s long term interest.

display items

choiceuser

…

state at 𝑡

system

…

state at 𝑡 + 1

display items

choice
…

state at 𝑡 + 2



Challenges
1. User is the environment

2. The reward function (a user’s interest) is unknown

Training of RL policy requires 
lots of interactions with users

reward=? reward=?

display items

choiceuser

system

…

state at 𝑡 + 1

display items

choice
…

state at 𝑡 + 2

…

state at 𝑡

e.g. 
(1) For AlphaGo Zero, 4.9 million games of self-play were generated for training. 
(2) RL for Atari game takes more than 50 hours on GPU for training.



Our solution
We propose

• A Generative Adversarial User Model 

- to model user’s action

- to recover user’s reward
• Use GAN User Model as a simulator to pre-train the RL policy offline 

GAN User Model
Simulated Environment

system
RL policy

simulated interaction



Generative Adversarial User Model
2 components:
User’s reward 𝒓(𝒔𝒕, 𝒂𝒕)

• 𝑎- is clicked item.
• 𝑠- is user’s experience (state).

User’s behavior 𝝓(𝒔𝒕,𝒜𝒕)

• 𝒜𝒕 contains items displayed by the system.
• act 𝑎- ∼ 𝜙 to maximize her expected reward.

• 𝜙∗(𝑠-,𝒜-) = argmax
:

𝔼: 𝑟 𝑠-, 𝑎- − 𝑅 𝜙 /𝜂

𝒓(𝒔𝒕, 𝒂𝒕)
reward

displayed items 𝒜-

𝑎- ∼ 𝜙 𝑠-,𝒜-

choice 



Generative Adversarial Training
In analogy to GAN:

• 𝝓 (behavior) acts as a generator

• 𝒓 (reward) acts as a discriminator 

Jointly learned via a mini-max formulation:

min
C
max
:

𝔼: D
-EF

G

𝑟 𝑠-, 𝑎- − 𝑅 𝜙 /𝜂 −D
-EF

G

𝑟(𝑠-CHI- , 𝑎-CHI- )



Model Parameterization

×

𝒇∗𝑡−1⋯𝒇∗𝑡−𝑚 weight matrix
𝑤11 ⋯

⋮
𝑤𝑚1 ⋯

concat
𝑤1𝑛

⋮ ⋮
𝑤𝑚𝑛

=
𝑟𝑖𝑡

ℎ𝑡−1

𝒇𝑖𝑡

2 architectures for aggregating historical information (i.e. state 𝑠-)

(1) LSTM

(2) Position Weight



Set Recommendation RL policy

display 𝑘 items
all available 𝐾 items

set recommendation 

combinatorial action space 𝑲𝒌

𝑎F∗ 𝑎N∗ 𝑎O∗

…

Intractable computation!

𝑎F∗, 𝑎N∗ , … 𝑎O∗ = arg max
QR,…,QS

𝑄(𝑠-, 𝑎F, 𝑎N, … , 𝑎O)



Set Recommendation RL policy

𝑸𝟏∗ 𝑠-, 𝑎F ≔ max
QX:S

𝑄(𝑠-, 𝑎F, 𝑎N:O)

𝑸𝟐∗ 𝑠-, 𝑎F, 𝑎N ≔ max
Q[:S

𝑄(𝑠-, 𝑎F, 𝑎N, 𝑎\:O)

𝑎F∗, 𝑎N∗ , … 𝑎O∗ = arg max
QR,…,QS

𝑄(𝑠-, 𝑎F, 𝑎N, … , 𝑎O)

decompose

𝑎F∗ = argmax
QR

𝑸𝟏∗(𝑠-, 𝑎F)

𝑎N∗ = argmax
QX

𝑸𝟐∗(𝑠-, 𝑎F∗, 𝑎N)

……

𝑎O∗ = argmax
QS

𝑸𝒌∗(𝑠-, 𝑎F∗, 𝑎N∗ , … , 𝑎O)

We design a cascading Q network to compute the optimal action 
with linear complexity:



Set Recommendation RL policy: Cascading DQN

Argmax

𝑎1∗ 𝑎2∗

…

𝑎𝑘∗

Argmax

𝑠𝑎1 𝑎2 𝑎𝑘

…

Argmax

𝑄1(𝑠, 𝑎1; 𝜃1) 𝑄2(𝑠, 𝑎1∗, 𝑎2; 𝜃2) 𝑄𝑘(𝑠, 𝑎1:𝑘−1∗ , 𝑎𝑘; 𝜃𝑘）



Experiments
Predictive Performance of User Model

Recommendation Policy Based On User Model



Experiments

Cascading-DQN policy pre-trained over a GAN User Model can quickly 
achieve a high CTR even when it is applied to a new set of users.



Thanks!

Poster: Pacific Ballroom #252, Tue, 06:30 PM

Contact: xinshi.chen@gatech.edu


