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Question of interest

_earning the causal structure of
networks of multivariate time series
IN continuous time



Example1: Information Diffusion
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Example 2: Disease Dynamics

* Consider a network of hospitals

* We observe a a sequence of
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Example 2: Disease Dynamics

* Consider a network of hospitals
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How do we usually
solve it?



Method: Multivariate Hawkes Process (MHP)

Temporal Point Process
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Method: Multivariate Hawkes Process (MHP)

Temporal Point Process
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Widely used model to learn causal A (t|7—[t) = ; + Z Z K j (t _ T)

structure between time series
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Method: Multivariate Hawkes Process (MHP)

* Prior work assume perfect traces
without noise

e \What if the observed stream of events
is subject to a random and unknown
{ N time shift?




How to learn MHPs under
noisy observations?




Multivariate Hawkes Process under Synchronization Noise

* What it events have systematic measurement errors?
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Multivariate Hawkes Process under Synchronization Noise

* What it events have systematic measurement errors?

Order of events can
be switched
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Multivariate Hawkes Process under Synchronization Noise

* What it events have systematic measurement errors?

Events can enter the
observation
window...




* What it events have systematic measurement errors?

Multivariate Hawkes Process under Synchronization Noise
e Edges learnt by maximum likelihood estimation can be
significantly affected by even small delays
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New approach DESYNC-MHP

¢ |dea:

* Consider the noise as parameters

* Maximize the joint log-likelihood over

both MHP parameters and noise — Objective function
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New approach DESYNC-MHP

¢ |dea:

* Consider the noise as parameters

* Maximize the joint log-likelihood over
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Experimental Results
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