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Solving PDEs is useful

◦Predicting weather systems

◦Aircraft and auto design

◦Oceanic flow



Solving PDEs is hard

◦High accuracy requires discretization on very fine grids

◦Developing efficient solvers is an active research area since 
many decades ago

◦Can we use machine learning to construct solvers?



Previous works
Learning to solve a single equation (new equation = retrain 
needed)  

◦ Katrutsa et al, 2017: learning the prolongation for Poisson equation

◦ Hsieh, 2019: accelerate Poisson solvers

◦ Baque et al, 2018: simulate fluid dynamics

◦ Han et al, 2018: PDEs in high dimension

◦ ...



This work

◦ Learning how to solve a family of PDEs

◦ Example: 2D elliptic diffusion problems

−𝛻 ⋅ 𝑔𝛻𝑢 = 𝑓

◦ Focus on multigrid solvers
◦ Solves the equation on multiple scales
◦ Prolongation operator for moving between scales



Key elements of our approach
◦ Scope - train a single network once for an entire class of PDEs

◦Unsupervised training - no ground truth provided, and no 
equation is solved during training

◦Generalization - train on small problems w. periodic BC & 
test on much larger problems w. Dirichlet BC

◦Efficient training – using Fourier analysis



TL;DR
oWe pose the following learning problem

min
𝜃

𝔼 𝐴~𝐷 𝜌 𝑀 𝐴, 𝑃𝜃 𝐴

o𝜌 𝑀 𝐴, 𝑃𝜃 𝐴 measures the convergence rate of the solver

o𝑃𝜃(𝐴) is a NN mapping PDEs (discretization matrices) to multigrid solvers 
(prolongation operators)

o𝐴~𝐷 is a distribution over PDEs 
(for example, a distribution over 𝑔 in −𝛻 ⋅ 𝑔𝛻𝑢 = 𝑓)



Some results
Grid size V cycle W cycle

32x32 83% 100%

64x64 92% 100%

128x128 91% 100%

256x256 84% 99%

512x512 81% 99%

1024x1024 83% 98%



If interested, come check out our poster @ Pacific Ballroom #249


