

Learning to optimize multigrid PDE solvers

DANIEL GREENFELD, WEIZMANN INSTITUTE OF SCIENCE

JOINT WORK W. MEIRAV GALUN, RON KIMMEL, IRAD YAVNEH AND RONEN BASRI

Solving PDEs is useful

- Predicting weather systems
- Aircraft and auto design
- Oceanic flow

Solving PDEs is hard

- High accuracy requires discretization on very fine grids
- Developing efficient solvers is an active research area since many decades ago
- Can we use machine learning to construct solvers?

Previous works

Learning to solve a single equation (new equation = retrain needed)

- Katrutsa et al, 2017: learning the prolongation for Poisson equation
- Hsieh, 2019: accelerate Poisson solvers
- Baque et al, 2018: simulate fluid dynamics
- Han et al, 2018: PDEs in high dimension

0

This work

- Learning how to solve a family of PDEs
- Example: 2D elliptic diffusion problems

$$-\nabla \cdot (g\nabla u) = f$$

- Focus on *multigrid solvers*
 - Solves the equation on multiple scales
 - Prolongation operator for moving between scales

Key elements of our approach

- Scope train a single network once for an entire class of PDEs
- Unsupervised training no ground truth provided, and no equation is solved during training
- Generalization train on small problems w. periodic BC & test on much larger problems w. Dirichlet BC
- Efficient training using Fourier analysis

TL;DR

•We pose the following learning problem

$$\min_{\theta} \mathbb{E}_{A \sim D} \rho \left(M(A, P_{\theta}(A)) \right)$$

- $\circ \rho \left(M(A, P_{\theta}(A)) \right)$ measures the convergence rate of the solver
- $\circ P_{\theta}(A)$ is a NN mapping PDEs (discretization matrices) to multigrid solvers (prolongation operators)
- \circ *A*∼*D* is a distribution over PDEs (for example, a distribution over *g* in $-\nabla \cdot (g\nabla u) = f$)

Some results

Grid size	V cycle	W cycle
32x32	83%	100%
64x64	92%	100%
128x128	91%	100%
256x256	84%	99%
512x512	81%	99%
1024×1024	83%	98%

If interested, come check out our poster @ Pacific Ballroom #249